#pragma GCC target("avx") #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") #include // #include // #include // #include // using namespace __gnu_pbds; // #include // namespace multiprecisioninteger = boost::multiprecision; // using cint=multiprecisioninteger::cpp_int; using namespace std; using ll=long long; #define double long double using datas=pair; using ddatas=pair; using tdata=pair; using vec=vector; using mat=vector; using pvec=vector; using pmat=vector; // using llset=tree,rb_tree_tag,tree_order_statistics_node_update>; #define For(i,a,b) for(i=a;i<(ll)b;++i) #define bFor(i,b,a) for(i=b,--i;i>=(ll)a;--i) #define rep(i,N) For(i,0,N) #define rep1(i,N) For(i,1,N) #define brep(i,N) bFor(i,N,0) #define brep1(i,N) bFor(i,N,1) #define all(v) (v).begin(),(v).end() #define allr(v) (v).rbegin(),(v).rend() #define vsort(v) sort(all(v)) #define vrsort(v) sort(allr(v)) #define endl "\n" #define eb emplace_back #define print(x) cout< ostream& operator<<(ostream& os,pair& p){return os<<"{"< inline bool chmax(T& a,T b){bool x=a inline bool chmin(T& a,T b){bool x=a>b;if(x)a=b;return x;} void startupcpp(){ cin.tie(0); ios::sync_with_stdio(false); cout<0){ if(n&1)res=res*a%m; a=a*a%m; n>>=1; } return res; } ll gcd(ll a,ll b){if(!b)return abs(a);return (a%b==0)?abs(b):gcd(b,a%b);} ll lcm(ll a,ll b){return a/gcd(a,b)*b;} ll countdigits(ll n){ ll ans=0; while(n){n/=10;ans++;} return ans; } ll sumdigits(ll n){ ll ans=0; while(n){ans+=n%10;n/=10;} return ans; } ll ans=0; int main(){ startupcpp(); // int codeforces;cin>>codeforces;while(codeforces--){ ll i,j,N; cin>>N; vec v(N),l(N),r(N),sol; rep(i,N){ cin>>v[i]; if(abs(v[i])==2)sol.eb(i); if(i&&l[i-1]){ l[i]=l[i-1]*v[i]; }else{ l[i]=v[i]; } if(abs(l[i])!=1)l[i]=0; } r[N-1]=v[N-1]; if(abs(r[N-1])!=1)r[N-1]=0; brep(i,N-1){ if(r[i+1]){ r[i]=r[i+1]*v[i]; }else{ r[i]=v[i]; } if(abs(r[i])!=1)r[i]=0; } // output(l); // output(r); for(auto& now:sol){ ll lcnt[2]={},rcnt[2]={}; i=now-1; while(i>=0&&abs(v[i])==1){ lcnt[r[i]>0]+=modpow(2,i-1); --i; } i=now+1; while(i0]+=modpow(2,N-i-2); ++i; } if(v[now]>0){ rep(i,2)ans+=lcnt[i]*rcnt[i^1]%mod; ans+=modpow(2,now-1)*rcnt[0]%mod; ans+=modpow(2,N-now-2)*lcnt[0]%mod; }else{ rep(i,2)ans+=lcnt[i]*rcnt[i]%mod; ans+=modpow(2,now-1)*rcnt[1]%mod; ans+=modpow(2,now-1)*modpow(2,N-now-2)%mod; ans+=modpow(2,N-now-2)*lcnt[1]%mod; } ans%=mod; } // print(ans); ans=moddevide(ans,modpow(2,N-1)); print(ans); }