import sys input=sys.stdin.readline def I(): return int(input()) def MI(): return map(int, input().split()) def LI(): return list(map(int, input().split())) """ 絶対値が2のところを起点に,前後の「絶対値が1以外である点」までを見る 此の幅を左A,右B個とする 左にa個,右にb個つなげられるかはは,その中に含まれる-1の個数次第. 此の時の期待値について考える, a個の各両端の境界a+1個 b個の各両端の境界b+1個 は確定,あとは自由なので 2^((N-1)-((a+1)+(b+1))) (ただし,a個,b個取った先が端ならa+1がaになったりするので注意かも?) 左右の組み合わせを一々考えるとO(N^2)でダメだが,それぞれ積が1.-1になる数を数えておいてあとでまとめる 左から見てa個使って1になるなら,他のところがフリー """ def main(): import bisect mod=998244353 N=I() A=LI() POW=[1] for i in range(N+3): aaa=POW[-1] POW.append((aaa*2)%mod) inf=10**6 abs2=[] abs_n1=[-1] for i in range(N): a=abs(A[i]) if a==2: abs2.append(i) if a!=1: abs_n1.append(i) abs_n1.append(N) N2=len(abs_n1) # 1,-1からなる数列を右から見ていき,積が1になる個数と-1になる個数をカウント # Rが配列で,iiが今見ている2の位置 def count(R,ii): NR=len(R) M=N-1-ii-1#2のすぐ右においた際にフリーな場所の個数 # print(R,M) if M==-1:# 端点 return 1,0 p1=POW[M]#2のすぐ右側を区切った場合,残りの箇所がフリー m1=0 now=1 for i in range(NR): a=R[i] now*=a M-=1 if M==-1: M=0 # print(i,POW[M],"*") if now>0: p1+=POW[M] p1%=mod else: m1+=POW[M] m1%=mod # print(ii,p1,m1) return p1,m1 ans=0 for i in range(N): a=A[i] if abs(a)==2: num=bisect.bisect_left(abs_n1,i)-1 left=abs_n1[num] L=A[left+1:i] lp1,lm1=count(L[::-1],N-i-1) num2=bisect.bisect_left(abs_n1,i)+1 right=abs_n1[num2] R=A[i+1:right] rp1,rm1=count(R,i) if a<0:#aが負なら,左右のpmは一致して欲しい temp=lp1*rp1 + lm1*rm1 else:#aが正なら,左右のpmは不一致して欲しい temp=lp1*rm1 + lm1*rp1 # print(i,temp) # print() ans+=temp ans%=mod aaa=pow(2,N-1,mod) ans=ans*pow(aaa,mod-2,mod) print(ans%mod) main()