# Ford-Fulkerson algorithm class FordFulkerson: def __init__(self, N): self.N = N self.edge = [[] for i in range(N)] def add_edge(self, fr, to, cap): forward = [to, cap, None] forward[2] = backward = [fr, 0, forward] self.edge[fr].append(forward) self.edge[to].append(backward) def add_multi_edge(self, v1, v2, cap1, cap2): edge1 = [v2, cap1, None] edge1[2] = edge2 = [v1, cap2, edge1] self.edge[v1].append(edge1) self.edge[v2].append(edge2) def dfs(self, v, t, f): if v == t: return f used = self.used used[v] = 1 for e in self.edge[v]: w, cap, rev = e if cap and not used[w]: d = self.dfs(w, t, min(f, cap)) if d: e[1] -= d rev[1] += d return d return 0 def flow(self, s, t): flow = 0 f = INF = 10**9 + 7 N = self.N while f: self.used = [0]*N f = self.dfs(s, t, INF) flow += f return flow import sys readline = sys.stdin.readline INF = 10**18 N, M, d = map(int, readline().split()) ff = FordFulkerson(2*M+2) fr = [0]*M to = [0]*M for i in range(M): u, v, p, q, w = map(int, readline().split()) ff.add_edge(1+i, 1+M+i, w) fr[i] = (u,p) to[i] = (v,q+d) if u==1: ff.add_edge(0,1+i,INF) if v==N: ff.add_edge(1+M+i,2*M+1,INF) for i,(v,q) in enumerate(to): for j,(u,p) in enumerate(fr): if v==u and q<=p: ff.add_edge(1+M+i,1+j,INF) ans = ff.flow(0, 2*M+1) print(ans)