#include using namespace std; using lint = long long; using pint = pair; using plint = pair; struct fast_ios { fast_ios() { cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_; #define FOR(i, begin, end) for (int i = (begin), i##_end_ = (end); i < i##_end_; i++) #define IFOR(i, begin, end) for (int i = (end)-1, i##_begin_ = (begin); i >= i##_begin_; i--) #define REP(i, n) FOR(i, 0, n) #define IREP(i, n) IFOR(i, 0, n) #define ALL(x) (x).begin(), (x).end() // template void ndarray(vector& vec, const V& val, int len) { vec.assign(len, val); } template void ndarray(vector& vec, const V& val, int len, Args... args) { vec.resize(len), for_each(begin(vec), end(vec), [&](T& v) { ndarray(v, val, args...); }); } template bool chmax(T& m, const T q) { return m < q ? (m = q, true) : false; } template bool chmin(T& m, const T q) { return m > q ? (m = q, true) : false; } template pair operator+(const pair& l, const pair& r) { return make_pair(l.first + r.first, l.second + r.second); } template pair operator-(const pair& l, const pair& r) { return make_pair(l.first - r.first, l.second - r.second); } template vector srtunq(vector vec) { return sort(vec.begin(), vec.end()), vec.erase(unique(vec.begin(), vec.end()), vec.end()), vec; } template istream& operator>>(istream& is, vector& vec) { return for_each(begin(vec), end(vec), [&](T& v) { is >> v; }), is; } // output template ostream& dmpseq(ostream&, const T&, const string&, const string&, const string&); #if __cplusplus >= 201703L template ostream& operator<<(ostream& os, const tuple& tpl) { return apply([&os](auto&&... args) { ((os << args << ','), ...); }, tpl), os; } #endif // template ostream& operator<<(ostream& os, const pair& p) { return os << '(' << p.first << ',' << p.second << ')'; } template ostream& operator<<(ostream& os, const vector& x) { return dmpseq, T>(os, x, "[", ",", "]"); } template ostream& operator<<(ostream& os, const deque& x) { return dmpseq, T>(os, x, "deq[", ",", "]"); } template ostream& operator<<(ostream& os, const set& x) { return dmpseq, T>(os, x, "{", ",", "}"); } template ostream& operator<<(ostream& os, const unordered_set& x) { return dmpseq, T>(os, x, "{", ",", "}"); } template ostream& operator<<(ostream& os, const multiset& x) { return dmpseq, T>(os, x, "{", ",", "}"); } template ostream& operator<<(ostream& os, const map& x) { return dmpseq, pair>(os, x, "{", ",", "}"); } template ostream& operator<<(ostream& os, const unordered_map& x) { return dmpseq, pair>(os, x, "{", ",", "}"); } template ostream& dmpseq(ostream& os, const T& seq, const string& pre, const string& sp, const string& suf) { return os << pre, for_each(begin(seq), end(seq), [&](V x) { os << x << sp; }), os << suf; } template void print(const vector& x) { dmpseq, T>(cout, x, "", " ", "\n"); } #define dbg(x) cerr << #x << " = " << (x) << " (L" << __LINE__ << ") " << __FILE__ << endl template struct ShortestPath { int V, E; int INVALID = -1; std::vector>> to; ShortestPath() = default; ShortestPath(int V) : V(V), E(0), to(V) {} void add_edge(int s, int t, T len) { assert(0 <= s and s < V); assert(0 <= t and t < V); to[s].emplace_back(t, len); E++; } std::vector dist; std::vector prev; // Dijkstra algorithm // Complexity: O(E log E) void Dijkstra(int s) { assert(0 <= s and s < V); dist.assign(V, std::numeric_limits::max()); dist[s] = 0; prev.assign(V, INVALID); using P = std::pair; std::priority_queue, std::greater

> pq; pq.emplace(0, s); while(!pq.empty()) { T d; int v; std::tie(d, v) = pq.top(); pq.pop(); if (dist[v] < d) continue; for (auto nx : to[v]) { T dnx = d + nx.second; if (dist[nx.first] > dnx) { dist[nx.first] = dnx, prev[nx.first] = v; pq.emplace(dnx, nx.first); } } } } // Bellman-Ford algorithm // Complexity: O(VE) bool BellmanFord(int s, int nb_loop) { assert(0 <= s and s < V); dist.assign(V, std::numeric_limits::max()); dist[s] = 0; prev.assign(V, INVALID); for (int l = 0; l < nb_loop; l++) { bool upd = false; for (int v = 0; v < V; v++) { if (dist[v] == std::numeric_limits::max()) continue; for (auto nx : to[v]) { T dnx = dist[v] + nx.second; if (dist[nx.first] > dnx) { dist[nx.first] = dnx, prev[nx.first] = v; upd = true; } } } if (!upd) return true; } return false; } // Warshall-Floyd algorithm // Complexity: O(E + V^3) std::vector> dist2d; void WarshallFloyd() { dist2d.assign(V, std::vector(V, std::numeric_limits::max())); for (int i = 0; i < V; i++) { dist2d[i][i] = 0; for (auto p : to[i]) dist2d[i][p.first] = min(dist2d[i][p.first], p.second); } for (int k = 0; k < V; k++) { for (int i = 0; i < V; i++) { if (dist2d[i][k] = std::numeric_limits::max()) continue; for (int j = 0; j < V; j++) { if (dist2d[k][j] = std::numeric_limits::max()) continue; dist2d[i][j] = min(dist2d[i][j], dist2d[i][k] + dist2d[k][j]); } } } } }; int main() { int N, M, A, B; cin >> N >> M >> A >> B; A--; vector LR(M); for (auto &p : LR) { cin >> p.first >> p.second; p.first--; } int V = N + 2; ShortestPath graph(V); for (auto [l, r] : LR) { graph.add_edge(l, r, 1); graph.add_edge(r, l, 1); } REP(i, A - 1) graph.add_edge(A, i, 0); FOR(j, B, V - 1) graph.add_edge(j + 1, B, 0); // dbg(A); // dbg(B); // dbg(LR); graph.Dijkstra(A); auto ret = graph.dist[B]; cout << (ret > V + 10 ? -1 : ret) << '\n'; }