{-# LANGUAGE BangPatterns #-} import Data.Bits import qualified GHC.Integer.GMP.Internals as GMP infixl 8 .<<., .>>. (.<<.) :: Bits b => b -> Int -> b (.<<.) = unsafeShiftL {-# INLINE (.<<.) #-} (.>>.) :: Bits b => b -> Int -> b (.>>.) = unsafeShiftR {-# INLINE (.>>.) #-} fi :: Int -> Integer fi = fromIntegral {-# INLINE fi #-} fI :: Integer -> Int fI = fromInteger {-# INLINE fI #-} ctz :: FiniteBits fb => fb -> Int ctz = countTrailingZeros {-# INLINE ctz #-} millerRabin :: Int -> Bool millerRabin k | k <= 3 = k == 2 || k == 3 | even k = False | otherwise = mr k where mr :: Int -> Bool mr n | n < 2047 = loop [2] | n < 1373653 = loop [2,3] | n < 9080191 = loop [31,73] | n < 25326001 = loop [2,3,5] | n < 4759123141 = loop [2,7,61] | n < 1122004669633 = loop [2,13,23,1662803] | n < 2152302898747 = loop [2,3,5,7,11] | n < 3474749660383 = loop [2,3,5,7,11,13] | n < 341550071728321 = loop [2,3,5,7,11,13,17] | otherwise = loop [2,325,9375,28178,450775,9780504,1795265022] where powModInt :: Int -> Int -> Int -> Int powModInt !a !n !mo = fI $ GMP.powModInteger (fi a) (fi n) (fi mo) !m = n - 1 !s = ctz m !d = m .>>. s loop :: [Int] -> Bool loop [] = True loop (a:as) | powModInt a d n /= 1 && allok = False | otherwise = loop as where allok = and . map (\r -> (powModInt a ((1 .<<. r) * d) n) /= m) $ [0..(s - 1)] main :: IO () main = do [n, p] <- map read . words <$> getLine if p == 1 || (millerRabin p && p > (n `div` 2)) then putStrLn "1" else print $ (n - 1) - solver n solver :: Int -> Int solver a = length . filter id . map millerRabin $ [a `div` 2 + 1 .. a]