#line 1 "main.cpp" /** * @title Template */ #include #include #include #include #include #include #include #include #line 2 "/Users/kodamankod/Desktop/cpp_programming/Library/other/chmin_chmax.cpp" template constexpr bool chmin(T &lhs, const U &rhs) { if (lhs > rhs) { lhs = rhs; return true; } return false; } template constexpr bool chmax(T &lhs, const U &rhs) { if (lhs < rhs) { lhs = rhs; return true; } return false; } /** * @title Chmin/Chmax */ #line 2 "/Users/kodamankod/Desktop/cpp_programming/Library/other/range.cpp" #line 4 "/Users/kodamankod/Desktop/cpp_programming/Library/other/range.cpp" class range { public: class iterator { private: int64_t M_position; public: constexpr iterator(int64_t position) noexcept: M_position(position) { } constexpr void operator ++ () noexcept { ++M_position; } constexpr bool operator != (iterator other) const noexcept { return M_position != other.M_position; } constexpr int64_t operator * () const noexcept { return M_position; } }; class reverse_iterator { private: int64_t M_position; public: constexpr reverse_iterator(int64_t position) noexcept: M_position(position) { } constexpr void operator ++ () noexcept { --M_position; } constexpr bool operator != (reverse_iterator other) const noexcept { return M_position != other.M_position; } constexpr int64_t operator * () const noexcept { return M_position; } }; private: const iterator M_first, M_last; public: constexpr range(int64_t first, int64_t last) noexcept: M_first(first), M_last(std::max(first, last)) { } constexpr iterator begin() const noexcept { return M_first; } constexpr iterator end() const noexcept { return M_last; } constexpr reverse_iterator rbegin() const noexcept { return reverse_iterator(*M_last - 1); } constexpr reverse_iterator rend() const noexcept { return reverse_iterator(*M_first - 1); } }; /** * @title Range */ #line 2 "/Users/kodamankod/Desktop/cpp_programming/Library/other/fix_point.cpp" #line 4 "/Users/kodamankod/Desktop/cpp_programming/Library/other/fix_point.cpp" template struct fix_point_impl: private Func { explicit constexpr fix_point_impl(Func &&func): Func(std::forward(func)) { } template constexpr decltype(auto) operator () (Args &&... args) const { return Func::operator()(*this, std::forward(args)...); } }; template constexpr decltype(auto) fix_point(Func &&func) { return fix_point_impl(std::forward(func)); } /** * @title Lambda Recursion */ #line 2 "/Users/kodamankod/Desktop/cpp_programming/Library/graph/union_find.cpp" #include #line 7 "/Users/kodamankod/Desktop/cpp_programming/Library/graph/union_find.cpp" class union_find { public: using size_type = size_t; private: class node_type { public: size_type parent, size; node_type(size_type parent): parent(parent), size(1) { } }; size_type M_components; std::vector M_forest; public: union_find() = default; explicit union_find(const size_type size) { initialize(size); } void initialize(const size_type size) { clear(); M_components = size; M_forest.reserve(size); for (size_type index = 0; index < size; ++index) { M_forest.emplace_back(index); } } size_type find_parent(const size_type node) { assert(node < size()); size_type &parent = M_forest[node].parent; if (node == parent) return node; return parent = find_parent(parent); } size_type count_components() const { return M_components; } size_type component_size(const size_type node) { assert(node < size()); return M_forest[find_parent(node)].size; } bool unite(size_type node1, size_type node2) { assert(node1 < size()); assert(node2 < size()); node1 = find_parent(node1); node2 = find_parent(node2); if (node1 == node2) return false; if (M_forest[node1].size < M_forest[node2].size) { std::swap(node1, node2); } M_forest[node1].size += M_forest[node2].size; M_forest[node2].parent = node1; --M_components; return true; } bool same_component(const size_type node1, const size_type node2) { assert(node1 < size()); assert(node2 < size()); return find_parent(node1) == find_parent(node2); } size_type size() const { return M_forest.size(); } bool empty() const { return M_forest.empty(); } void clear() { M_components = 0; M_forest.clear(); M_forest.shrink_to_fit(); } }; /** * @title Disjoint Set Union */ #line 19 "main.cpp" using i32 = std::int32_t; using i64 = std::int64_t; using u32 = std::uint32_t; using u64 = std::uint64_t; using isize = std::ptrdiff_t; using usize = std::size_t; constexpr i32 inf32 = (i32(1) << 30) - 1; constexpr i64 inf64 = (i64(1) << 62) - 1; int main() { usize N; std::cin >> N; std::vector A(N), B(N); std::map, usize> Id; for (auto i: range(0, N)) { std::cin >> A[i] >> B[i]; --A[i]; --B[i]; Id[std::minmax(A[i], B[i])] = i; } std::vector> graph(N); union_find dsu(N); usize st, en; for (auto i: range(0, N)) { if (dsu.unite(A[i], B[i])) { graph[A[i]].push_back(B[i]); graph[B[i]].push_back(A[i]); } else { st = A[i]; en = B[i]; } } std::vector parent(N), depth(N); fix_point([&](auto dfs, usize u, usize p, usize d) -> void { parent[u] = p; depth[u] = d; for (auto v: graph[u]) { if (v != p) { dfs(v, u, d + 1); } } })(0, 0, 0); std::vector ans; ans.push_back(Id[std::minmax(st, en)]); while (st != en) { if (depth[st] > depth[en]) { ans.push_back(Id[std::minmax(st, parent[st])]); st = parent[st]; } else { ans.push_back(Id[std::minmax(en, parent[en])]); en = parent[en]; } } std::cout << ans.size() << '\n'; std::sort(ans.begin(), ans.end()); for (auto i: range(0, ans.size())) { std::cout << ans[i] + 1 << (i + 1 == (isize) ans.size() ? '\n' : ' '); } return 0; }