#![allow(unused_imports)] use std::cmp::*; use std::collections::*; use std::io::Write; use std::ops::Bound::*; #[allow(unused_macros)] macro_rules! debug { ($($e:expr),*) => { #[cfg(debug_assertions)] $({ let (e, mut err) = (stringify!($e), std::io::stderr()); writeln!(err, "{} = {:?}", e, $e).unwrap() })* }; } fn main() { let n = read::(); let mut pairs = vec![]; for i in 0..n { let v = read_vec::(); let (a, b) = (v[0] - 1, v[1] - 1); pairs.push((a, b)); } let mut uft = UnionFindTree::new(n); let mut not_used = 0; for i in 0..n { let (a, b) = pairs[i]; if uft.same(a, b) { not_used = i; break; } uft.unite(a, b); } let mut tree = vec![vec![]; n]; for i in 0..n { if i == not_used { continue; } let (a, b) = pairs[i]; tree[a].push(b); tree[b].push(a); } let lca = LCA::new(&tree); let (a, b) = pairs[not_used]; let lca_node = lca.lca(a, b); let mut answers = vec![(a, b)]; for &start in &[a, b] { let mut cur = start; while cur != lca_node { let parent = lca.parent[0][cur].unwrap(); answers.push((cur, parent)); cur = parent; } } // debug!(answers); let mut index_map = HashMap::new(); for i in 0..n { let (u, v) = pairs[i]; index_map.insert((u, v), i); index_map.insert((v, u), i); } println!("{}", answers.len()); for (u, v) in answers { print!("{} ", index_map[&(u, v)] + 1); } println!(""); } fn read() -> T { let mut s = String::new(); std::io::stdin().read_line(&mut s).ok(); s.trim().parse().ok().unwrap() } fn read_vec() -> Vec { read::() .split_whitespace() .map(|e| e.parse().ok().unwrap()) .collect() } struct LCA { depth: Vec, parent: Vec>>, log_v: usize, } impl LCA { fn new(g: &Vec>) -> LCA { LCA::with_root(g, 0) } fn with_root(g: &Vec>, root: usize) -> LCA { let n = g.len(); let log_v = (1..).find(|i| 1usize << i > n).unwrap(); let mut lca = LCA { depth: vec![0usize; n], parent: vec![vec![None; n]; 18 + 1], // support 2 ^ 20 log_v: log_v, }; lca.dfs(root, None, 0, &g); lca.doubling(g.len()); lca } fn doubling(&mut self, n: usize) { for k in 0..self.log_v { for v in 0..n { if let Some(parent_v) = self.parent[k][v] { self.parent[k + 1][v] = self.parent[k][parent_v]; } } } } fn dfs(&mut self, cur: usize, p: Option, cur_depth: usize, g: &Vec>) { self.parent[0][cur] = p; self.depth[cur] = cur_depth; for &to in g[cur].iter() { if Some(to) == p { continue; } self.dfs(to, Some(cur), cur_depth + 1, g); } } fn lca(&self, mut u: usize, mut v: usize) -> usize { if self.depth[u] > self.depth[v] { std::mem::swap(&mut u, &mut v); } while self.depth[v] != self.depth[u] { v = self.parent[(self.depth[v] - self.depth[u]).trailing_zeros() as usize][v].unwrap(); } if u == v { return u; } for k in (0..self.parent.len()).rev() { if self.parent[k][u] != self.parent[k][v] { u = self.parent[k][u].unwrap(); v = self.parent[k][v].unwrap(); } } self.parent[0][u].unwrap() } } #[derive(Debug, Clone)] struct Edge { from: usize, to: usize, cost: i32, } impl PartialEq for Edge { fn eq(&self, other: &Edge) -> bool { self.cost == other.cost } } impl Eq for Edge {} impl Ord for Edge { fn cmp(&self, other: &Self) -> Ordering { self.cost.cmp(&other.cost) } } impl PartialOrd for Edge { fn partial_cmp(&self, other: &Edge) -> Option { Some(self.cost.cmp(&other.cost)) } } struct UnionFindTree { parent_or_size: Vec, } impl UnionFindTree { fn new(size: usize) -> UnionFindTree { UnionFindTree { parent_or_size: vec![-1; size], } } fn find(&self, index: usize) -> usize { let mut index = index; while self.parent_or_size[index] >= 0 { index = self.parent_or_size[index] as usize; } index } fn same(&self, x: usize, y: usize) -> bool { self.find(x) == self.find(y) } fn unite(&mut self, index0: usize, index1: usize) -> bool { let a = self.find(index0); let b = self.find(index1); if a == b { false } else { if self.parent_or_size[a] < self.parent_or_size[b] { self.parent_or_size[a] += self.parent_or_size[b]; self.parent_or_size[b] = a as isize; } else { self.parent_or_size[b] += self.parent_or_size[a]; self.parent_or_size[a] = b as isize; } true } } }