# Python3 program to calculate 
# Euler's Totient Function
def phi(n):
     
    # Initialize result as n
    result = n; 
 
    # Consider all prime factors
    # of n and subtract their
    # multiples from result
    p = 2; 
    while(p * p <= n):
         
        # Check if p is a 
        # prime factor.
        if (n % p == 0): 
             
            # If yes, then 
            # update n and result
            while (n % p == 0):
                n = int(n / p);
            result -= int(result / p);
        p += 1;
 
    # If n has a prime factor
    # greater than sqrt(n)
    # (There can be at-most 
    # one such prime factor)
    if (n > 1):
        result -= int(result / n);
    return result;
# This code is contributed 
# by mits
t=int(input())
for _ in range(t):
  n=int(input())
  totient=phi(2*n-1)
  while True:
    flag=0
    count=2
    while count*count<=totient:
      if totient%count==0 and pow(2,totient//count,2*n-1)==1:
        totient=totient//count
        break
      count+=1
    if count*count>totient:
      flag=1
    if flag==1:
      break
  print(totient)