import sys,bisect,string,math,time,functools,random,fractions from heapq import heappush,heappop,heapify from collections import deque,defaultdict,Counter from itertools import permutations,combinations,groupby rep=range;R=range def Golf():n,*t=map(int,open(0).read().split()) def I():return int(input()) def S_():return input() def IS():return input().split() def LS():return [i for i in input().split()] def MI():return map(int,input().split()) def LI():return [int(i) for i in input().split()] def LI_():return [int(i)-1 for i in input().split()] def NI(n):return [int(input()) for i in range(n)] def NI_(n):return [int(input())-1 for i in range(n)] def NLI(n):return [[int(i) for i in input().split()] for i in range(n)] def NLI_(n):return [[int(i)-1 for i in input().split()] for i in range(n)] def StoLI():return [ord(i)-97 for i in input()] def ItoS(n):return chr(n+97) def LtoS(ls):return ''.join([chr(i+97) for i in ls]) def RA():return map(int,open(0).read().split()) def RLI(n=8,a=1,b=10):return [random.randint(a,b)for i in range(n)] def RI(a=1,b=10):return random.randint(a,b) def INP(): N=10;A=10 n=random.randint(1,N) a=[random.randint(1,A) for i in range(n)] return n,a def Rtest(T): case,err=0,0 for i in range(T): inp=INP() a1=naive(*inp) a2=solve(*inp) if a1!=a2: print((a1,a2),inp) err+=1 case+=1 print('Tested',case,'case with',err,'errors') def GI(V,E,ls=None,Directed=False,index=1): org_inp=[];g=[[] for i in range(V)] FromStdin=True if ls==None else False for i in range(E): if FromStdin: inp=LI() org_inp.append(inp) else: inp=ls[i] if len(inp)==2: a,b=inp;c=1 else: a,b,c=inp if index==1:a-=1;b-=1 aa=(a,c);bb=(b,c);g[a].append(bb) if not Directed:g[b].append(aa) return g,org_inp def GGI(h,w,search=None,replacement_of_found='.',mp_def={'#':1,'.':0},boundary=1): #h,w,g,sg=GGI(h,w,search=['S','G'],replacement_of_found='.',mp_def={'#':1,'.':0},boundary=1) # sample usage mp=[boundary]*(w+2);found={} for i in R(h): s=input() for char in search: if char in s: found[char]=((i+1)*(w+2)+s.index(char)+1) mp_def[char]=mp_def[replacement_of_found] mp+=[boundary]+[mp_def[j] for j in s]+[boundary] mp+=[boundary]*(w+2) return h+2,w+2,mp,found def TI(n):return GI(n,n-1) def accum(ls): rt=[0] for i in ls:rt+=[rt[-1]+i] return rt def bit_combination(n,base=2): rt=[] for tb in R(base**n):s=[tb//(base**bt)%base for bt in R(n)];rt+=[s] return rt def gcd(x,y): if y==0:return x if x%y==0:return y while x%y!=0:x,y=y,x%y return y def YN(x):print(['NO','YES'][x]) def Yn(x):print(['No','Yes'][x]) def show(*inp,end='\n'): if show_flg:print(*inp,end=end) mo=10**9+7 #mo=998244353 inf=float('inf') FourNb=[(-1,0),(1,0),(0,1),(0,-1)];EightNb=[(-1,0),(1,0),(0,1),(0,-1),(1,1),(-1,-1),(1,-1),(-1,1)];compas=dict(zip('WENS',FourNb));cursol=dict(zip('LRUD',FourNb)) l_alp=string.ascii_lowercase #sys.setrecursionlimit(10**9) read=sys.stdin.buffer.read;readline=sys.stdin.buffer.readline;input=lambda:sys.stdin.readline().rstrip() class UnionFind: def __init__(self, n): # 負 : 根であることを示す。絶対値はランクを示す # 非負: 根でないことを示す。値は親を示す self.table = [-1] * n def _root(self, x): if self.table[x] < 0: return x else: # 経路の圧縮 self.table[x] = self._root(self.table[x]) return self.table[x] def find(self, x, y): return self._root(x) == self._root(y) def union(self, x, y): r1 = self._root(x) r2 = self._root(y) if r1 == r2: return # ランクの取得 d1 = self.table[r1] d2 = self.table[r2] if d1 <= d2: self.table[r2] = r1 if d1 == d2: self.table[r1] -= 1 else: self.table[r1] = r2 def __str__(self): rt=[i if j<0 else j for i,j in enumerate(self.table)] return str(rt) show_flg=False show_flg=True ans=0 T,*t=map(int,open(0).read().split()) for i in range(T): n=t[i*7] a=t[i*7+1:i*7+7:2] b=t[i*7+2:i*7+8:2] bg,bc,bp=b ans=pow(bp,n,mo)*pow(bg,n,mo)*pow(bc,n,mo)%mo ag,ac,ap=a bg,bc,bp=b r=pow(bp-ap,n,mo)*pow(bg,n,mo)*pow(bc,n,mo) r+=-pow(ag,n,mo)*pow(bp,n,mo)*pow(bc,n,mo) r+=-pow(ac,n,mo)*pow(bp,n,mo)*pow(bg,n,mo) ans-=r ag,ac,ap=a[1:]+a[:1] bg,bc,bp=b[1:]+b[:1] r=pow(bp-ap,n,mo)*pow(bg,n,mo)*pow(bc,n,mo) r+=-pow(ag,n,mo)*pow(bp,n,mo)*pow(bc,n,mo) r+=-pow(ac,n,mo)*pow(bp,n,mo)*pow(bg,n,mo) ans-=r ag,ac,ap=a[2:]+a[:2] bg,bc,bp=b[2:]+b[:2] r=pow(bp-ap,n,mo)*pow(bg,n,mo)*pow(bc,n,mo) r+=-pow(ag,n,mo)*pow(bp,n,mo)*pow(bc,n,mo) r+=-pow(ac,n,mo)*pow(bp,n,mo)*pow(bg,n,mo) ans-=r x=pow(bp,n,mo)*pow(bg,n,mo)*pow(bc,n,mo) x=pow(x,mo-2,mo) ans*=x show(ans%mo)