{-# LANGUAGE BangPatterns #-} {-# LANGUAGE LambdaCase #-} import Control.Monad import Control.Monad.ST import Control.Monad.Fix import Data.Bits import Data.Bool import qualified Data.Vector.Fusion.Stream.Monadic as VFSM import qualified Data.Vector.Unboxed as VU import qualified Data.Vector.Unboxed.Mutable as VUM inf32 :: Int inf32 = 9999999 {-# NOINLINE inf32 #-} stream :: Monad m => Int -> Int -> VFSM.Stream m Int stream !l !r = VFSM.Stream step l where step x | x < r = return $ VFSM.Yield x (2 * x) | otherwise = return $ VFSM.Done {-# INLINE [0] step #-} {-# INLINE [1] stream #-} rep :: Monad m => Int -> (Int -> m ()) -> m () rep n = flip VFSM.mapM_ (stream (-n) (n + 1)) {-# INLINE rep #-} main :: IO () main = readLn >>= print . solver solver :: Int -> Int solver n = runST $ do dp <- VUM.replicate (n + 1) inf32 VUM.unsafeWrite dp 1 (1 :: Int) q <- newVecQueue defaultVecQueueSize enqueueVQ (1 :: Int) q fix $ \loop -> do dequeueVQ q >>= \case Nothing -> do item <- VUM.unsafeRead dp n return $ bool (-1) item (item /= inf32) Just j -> do let move = popCount j rep move $ \i -> do let next = i + j when (1 <= next && next <= n) $ do item1 <- VUM.unsafeRead dp next when (item1 == inf32) $ do now <- VUM.unsafeRead dp j VUM.unsafeWrite dp next now enqueueVQ next q loop data VecQueue s a = VecQueue { intVarsVQ :: !(VUM.STVector s Int) , internalVQ :: !(VUM.STVector s a) } _dequeueCount :: Int _dequeueCount = 0 {-# INLINE _dequeueCount #-} _enqueueCount :: Int _enqueueCount = 1 {-# INLINE _enqueueCount #-} newVecQueue :: VUM.Unbox a => Int -> ST s (VecQueue s a) newVecQueue n = VecQueue <$> VUM.replicate 2 0 <*> VUM.unsafeNew n defaultVecQueueSize :: Int defaultVecQueueSize = 1024 * 1024 lengthVQ :: VUM.Unbox a => VecQueue s a -> ST s Int lengthVQ (VecQueue info _) = (-) <$> VUM.unsafeRead info _enqueueCount <*> VUM.unsafeRead info _dequeueCount {-# INLINE lengthVQ #-} dequeueVQ :: VUM.Unbox a => VecQueue s a -> ST s (Maybe a) dequeueVQ (VecQueue info q) = do f <- VUM.unsafeRead info _dequeueCount r <- VUM.unsafeRead info _enqueueCount if f < r then do VUM.unsafeWrite info _dequeueCount (f + 1) pure <$> VUM.unsafeRead q f else return Nothing {-# INLINE dequeueVQ #-} enqueueVQ :: VUM.Unbox a => a -> VecQueue s a -> ST s () enqueueVQ x (VecQueue info q) = do r <- VUM.unsafeRead info _enqueueCount VUM.unsafeWrite q r x VUM.unsafeWrite info _enqueueCount (r + 1) {-# INLINE enqueueVQ #-} enqueuesVQ :: VUM.Unbox a => VU.Vector a -> VecQueue s a -> ST s () enqueuesVQ vec (VecQueue info q) = do r <- VUM.unsafeRead info _enqueueCount VUM.unsafeWrite info _enqueueCount (r + VU.length vec) VU.unsafeCopy (VUM.unsafeSlice r (VU.length vec) q) vec {-# INLINE enqueuesVQ #-} clearVQ :: VUM.Unbox a => VecQueue s a -> ST s () clearVQ (VecQueue info _) = do VUM.unsafeWrite info _dequeueCount 0 VUM.unsafeWrite info _enqueueCount 0 freezeVecQueue :: VUM.Unbox a => VecQueue s a -> ST s (VU.Vector a) freezeVecQueue (VecQueue info q) = do f <- VUM.unsafeRead info _dequeueCount r <- VUM.unsafeRead info _enqueueCount VU.unsafeFreeze $ VUM.unsafeSlice f (r - f) q