#![allow(unused_imports, unused_macros)] use kyoproio::*; use std::{ collections::*, io::{self, prelude::*}, iter, mem::{replace, swap}, }; fn main() -> io::Result<()> { std::thread::Builder::new() .stack_size(64 * 1024 * 1024) .spawn(|| { run( KInput::new(io::stdin().lock()), io::BufWriter::new(io::stdout().lock()), ) })? .join() .unwrap(); Ok(()) } fn run(mut kin: I, mut out: O) { macro_rules! output { ($($args:expr),+) => { write!(&mut out, $($args),+).unwrap(); }; } macro_rules! outputln { ($($args:expr),+) => { output!($($args),+); outputln!(); }; () => { output!("\n"); if cfg!(debug_assertions) { out.flush().unwrap(); } } } let n: usize = kin.input(); let a: Vec = kin.seq(n); let b: Vec = kin.seq(n); if a.first() != b.first() || a.last() != b.last() { outputln!("-1"); return; } let mut xa = vec![(0, 0); n - 1]; let mut xb = vec![(0, 0); n - 1]; for i in 0..n - 1 { xa[i] = (a[i] ^ a[i + 1], i); xb[i] = (b[i] ^ b[i + 1], i); } xa.sort(); xb.sort(); let mut ij = vec![(0, 0); n - 1]; for i in 0..n - 1 { let (av, ai) = xa[i]; let (bv, bi) = xb[i]; if av != bv { outputln!("-1"); return; } ij[i] = (ai, bi); } ij.sort(); let mut fen = FenwickTree::new(n - 1, || 0, |a, b| a + b); let mut ans = 0; for (i, j) in ij { ans += i - fen.fold(j); fen.apply(j, 1); } outputln!("{}", ans); } pub struct FenwickTree { a: Vec, f: F, z: Z, } impl T, Z: Fn() -> T> FenwickTree { pub fn new(n: usize, z: Z, f: F) -> Self { Self { a: std::iter::repeat_with(&z).take(n + 1).collect(), f, z, } } pub fn apply(&mut self, mut i: usize, x: T) { i += 1; while i < self.a.len() { self.a[i] = (self.f)(&self.a[i], &x); i += i & (!i + 1); } } // [0, i) pub fn fold(&self, mut i: usize) -> T { let mut s = (self.z)(); while i > 0 { s = (self.f)(&self.a[i], &s); i -= i & (!i + 1); } s } } // ----------------------------------------------------------------------------- pub mod kyoproio { use std::io::prelude::*; pub trait Input { fn str(&mut self) -> &str; fn input(&mut self) -> T { T::input(self) } fn iter(&mut self) -> Iter { Iter(self, std::marker::PhantomData) } fn seq>(&mut self, n: usize) -> B { self.iter().take(n).collect() } } pub struct KInput { src: R, buf: String, pos: usize, } impl KInput { pub fn new(src: R) -> Self { Self { src, buf: String::with_capacity(1 << 12), pos: 0, } } } impl Input for KInput { fn str(&mut self) -> &str { loop { if self.pos >= self.buf.len() { self.pos = 0; self.buf.clear(); if self.src.read_line(&mut self.buf).expect("io error") == 0 { return &self.buf; } } let range = self.pos ..self.buf[self.pos..] .find(|c: char| c.is_ascii_whitespace()) .map(|i| i + self.pos) .unwrap_or_else(|| self.buf.len()); self.pos = range.end + 1; if range.end > range.start { return &self.buf[range]; } } } } pub struct Iter<'a, T, I: ?Sized>(&'a mut I, std::marker::PhantomData<*const T>); impl<'a, T: InputParse, I: Input + ?Sized> Iterator for Iter<'a, T, I> { type Item = T; fn next(&mut self) -> Option { Some(self.0.input()) } } pub trait InputParse: Sized { fn input(src: &mut I) -> Self; } impl InputParse for Vec { fn input(src: &mut I) -> Self { src.str().as_bytes().to_owned() } } macro_rules! from_str_impl { { $($T:ty)* } => { $(impl InputParse for $T { fn input(src: &mut I) -> Self { src.str().parse::<$T>().expect("parse error") } })* } } from_str_impl! { String char bool f32 f64 isize i8 i16 i32 i64 i128 usize u8 u16 u32 u64 u128 } macro_rules! tuple_impl { ($H:ident $($T:ident)*) => { impl<$H: InputParse, $($T: InputParse),*> InputParse for ($H, $($T),*) { fn input(src: &mut I) -> Self { ($H::input(src), $($T::input(src)),*) } } tuple_impl!($($T)*); }; () => {} } tuple_impl!(A B C D E F G); #[macro_export] macro_rules! kdbg { ($($v:expr),*) => { if cfg!(debug_assertions) { dbg!($($v),*) } else { ($($v),*) } } } }