{-# LANGUAGE BangPatterns #-} import Control.Arrow import Control.Monad import Control.Monad.Fix import Control.Monad.State import qualified Data.ByteString.Char8 as BSC8 import qualified Data.Vector.Fusion.Stream.Monadic as VFSM import qualified Data.Vector.Unboxed as VU import qualified Data.Vector.Unboxed.Mutable as VUM type Parser a = BSC8.ByteString -> Maybe (a, BSC8.ByteString) parseInt :: Parser Int parseInt = fmap (second BSC8.tail) . BSC8.readInt parse2 :: IO (Int, Int) parse2 = (\vec -> ((vec VU.! 0) - 1, (vec VU.! 1) - 1)) . VU.unfoldrN 2 parseInt <$> BSC8.getLine stream :: Monad m => Int -> Int -> VFSM.Stream m Int stream !l !r = VFSM.Stream step l where step x | x < r = return $ VFSM.Yield x (x + 1) | otherwise = return $ VFSM.Done {-# INLINE [0] step #-} {-# INLINE [1] stream #-} rep :: Monad m => Int -> (Int -> m ()) -> m () rep n = flip VFSM.mapM_ (stream 0 n) {-# INLINE rep #-} type UnionFind = VUM.IOVector Int newUF :: Int -> IO UnionFind newUF n = VUM.replicate n (-1) {-# INLINE newUF #-} rootUF :: UnionFind -> Int -> IO Int rootUF uf x = do p <- VUM.unsafeRead uf x if p < 0 then return x else do r <- rootUF uf p VUM.unsafeWrite uf x r return r {-# INLINE rootUF #-} connectedUF :: UnionFind -> Int -> Int -> IO Bool connectedUF uf x y = liftM2 (==) (rootUF uf x) (rootUF uf y) {-# INLINE connectedUF #-} uniteUF :: UnionFind -> Int -> Int -> IO () uniteUF uf x y = do a <- rootUF uf x b <- rootUF uf y when (a /= b) $ do ar <- VUM.unsafeRead uf a br <- VUM.unsafeRead uf b let (p, c) = if ar < br then (a, b) else (b, a) when (ar == br) $ VUM.unsafeModify uf pred p VUM.unsafeWrite uf c p connectGroupUF :: UnionFind -> IO Int connectGroupUF uf = VU.length . VU.filter (>= 0) <$> VU.unsafeFreeze uf {-# INLINE connectGroupUF #-} sizeUF :: UnionFind -> Int -> IO Int sizeUF uf = fix $ \loop x -> do px <- VUM.unsafeRead uf x if px < 0 then return $! negate px else loop px {-# INLINE sizeUF #-} main :: IO () main = do [n, m] <- map read . words <$> getLine uf <- newUF n rep m $ \_ -> do (a, b) <- parse2 uniteUF uf (a-1) (b-1) rep n $ \i -> do print . succ =<< rootUF uf i