//#define _GLIBCXX_DEBUG #include #define rep(i, n) for(int i=0; i; using vs = vector; using vi = vector; using vvi = vector; template using PQ = priority_queue; template using PQG = priority_queue, greater >; const int INF = 0xccccccc; const ll LINF = 0xcccccccccccccccLL; template inline bool chmax(T1 &a, T2 b) {return a < b && (a = b, true);} template inline bool chmin(T1 &a, T2 b) {return a > b && (a = b, true);} template istream &operator>>(istream &is, pair &p) { return is >> p.first >> p.second;} template ostream &operator<<(ostream &os, const pair &p) { return os << p.first << ' ' << p.second;} struct Sieve { int n; vector f, primes; Sieve(int n=1):n(n), f(n+1) { f[0] = f[1] = -1; for(int i=2; i<=n; ++i) { if(!f[i]) { primes.emplace_back(i); f[i] = i; } for(int p:primes) { int u = p*i; if(u > n or p > f[i]) break; f[u] = p; } } } //素数判定 bool isPrime(int x) {return f[x] == x;} //素数判定(1つ用)(宣言はsqrt(x)のサイズで) bool isPrime1(int64_t x) { bool m = true; for(int z:primes) { if(!(x%z)) { m = false; break; } } return m; } //素数列挙 vector factorList(int x) { assert(x <= n); vector res; while(x != 1) { res.emplace_back(f[x]); x /= f[x]; } return res; } //素因数分解 pair(素数, 素因数の数) vector > factor(int x) { vector fl = factorList(x); if(fl.size() == 0) return {}; vector > res(1, pair(fl[0], 0)); for(int p : fl) { if(res.back().first == p) { ++res.back().second; } else { res.emplace_back(p, 1); } } return res; } //素数列挙(1つ用)(宣言はsqrt(x)のサイズで) vector factorList1(int64_t x) { vector vec; for(int z:primes) { while(!(x%z)) { vec.emplace_back(z); x /= z; } } if(x != 1) vec.emplace_back(x); return vec; } //素数列挙(1つ用)(宣言はsqrt(x)のサイズで) pair(素数, 素因数の数) vector > factor1(int64_t x) { vector vec = factorList1(x); vector > vecc; for(vector::iterator itr = vec.begin(); itr != vec.end(); ++itr) { if(itr != vec.begin() && *itr == *(itr-1)) { (vecc.end()-1)->second++; } else { vecc.emplace_back(pair(*itr, 1)); } } return vecc; } //約数列挙 vector div1(int64_t x) { vector res(1, 1); vector > fac = factor1(x); for(int i = 0; i < int(fac.size()); ++i) { int si = res.size(); for(int j = 0; j < fac[i].second; ++j) { for(int k = 0; k < si; ++k) { res.emplace_back(res[k+j*si]*fac[i].first); } } } sort(res.begin(), res.end()); return res; } } pp(100000); struct barrett { unsigned int _m; uint64_t im; barrett(unsigned int m):_m(m), im(uint64_t(-1)/m + 1) {} unsigned int umod() const {return _m;} unsigned int mul(unsigned int a, unsigned int b) const { uint64_t z = a; z *= b; uint64_t x = uint64_t(((unsigned __int128)(z)*im) >> 64); unsigned int v = (unsigned int)(z-x*_m); if(_m <= v) v += _m; return v; } }; constexpr int64_t safe_mod(int64_t x, int64_t m) { x %= m; if(x < 0) x += m; return x; } constexpr pair inv_gcd(int64_t a, int64_t b) { a = safe_mod(a, b); if(a == 0) return {b, 0}; int64_t s = b, t = a; int64_t m0 = 0, m1 = 1; while(t) { int64_t u = s/t; s -= t*u; m0 -= m1*u; int64_t tmp = s; s = t; t = tmp; tmp = m0; m0 = m1; m1 = tmp; } if(m0 < 0) m0 += b/s; return {s, m0}; } int64_t pow_mod(int64_t x, int64_t n, int m) { if(m == 1) return 0; barrett bt((unsigned int)(m)); unsigned int r = 1, y = (unsigned int)(safe_mod(x, m)); while(n) { if(n&1) r = bt.mul(r, y); y = bt.mul(y, y); n >>= 1; } return r; } int64_t inv_mod(int64_t x, int64_t m) { pair z = inv_gcd(x, m); assert(z.first == 1); return z.second; } //(y, z) answer mod z = y, 無理な時は(-1, -1) pair crt(const vector &r, const vector &m) { int n = int(r.size()); int64_t r0 = 0, m0 = 1; for(int i = 0; i < n; i++) { assert(1 <= m[i]); int64_t r1 = safe_mod(r[i], m[i]), m1 = m[i]; if(m0 < m1) { swap(r0, r1); swap(m0, m1); } if(m0 % m1 == 0) { if(r0 % m1 != r1) return {-1, -1}; continue; } int64_t g, im; tie(g, im) = inv_gcd(m0, m1); int64_t u1 = (m1/g); if((r1-r0)%g) return {-1, -1}; int64_t x = (r1-r0)/g%u1 * im % u1; r0 += x*m0; m0 *= u1; if(r0 < 0) r0 += m0; } return {r0, m0}; } //[0, n) (a*i+b)/m int64_t floor_sum(int64_t n, int64_t m, int64_t a, int64_t b) { int64_t ans = 0; if(a >= m) { ans += ((n-1)*n>>1)*(a/m); a %= m; } if(b >= m) { ans += n*(b/m); b %= m; } int64_t y_max = (a*n+b)/m, x_max = y_max*m-b; if(y_max == 0) return ans; ans += (n - (x_max+a-1)/a) * y_max; ans += floor_sum(y_max, a, m, (a - x_max%a)%a); return ans; } //head int main() { ios::sync_with_stdio(false); cin.tie(0); int t; cin >> t; while(t--) { int n; cin >> n; if(n == 1) { cout << "1\n"; continue; } int mod = n*2-1; auto z = pp.factor1(mod); int u = mod; for(P x:z) { u /= x.first; u *= x.first-1; } auto zz = pp.div1(u); for(auto x:zz) { if(pow_mod(2, x, mod) == 1) { cout << x << '\n'; break; } } } }