#include using namespace std; #define rep(i, n) for(int(i) = 0; (i) < (n); (i)++) #define FOR(i, m, n) for(int(i) = (m); (i) < (n); (i)++) #define All(v) (v).begin(), (v).end() #define pb push_back #define MP(a, b) make_pair((a), (b)) template vector make_vec(size_t a, T val) { return vector(a, val); } template auto make_vec(size_t a, Ts... ts) { return vector(a, make_vec(ts...)); } using ll = long long; using pii = pair; using pll = pair; using Graph = vector>; template struct edge { int to; T cost; edge(int t, T c) : to(t), cost(c) {} }; template using WGraph = vector>>; const int INF = 1 << 30; const ll LINF = 1LL << 60; const int MOD = 1e9 + 7; // LazySegmentTree(0-indexed) template class LazySegTree { private: using F = function; using G = function; using H = function; using L = function; int n; const F f; const G g; const H h; const L reflect_len; const Monoid e; const OperatorMonoid o_e; vector node; vector lazy; public: LazySegTree(int sz, const F _f, const G _g, const H _h, const L _l, const Monoid &_e, const OperatorMonoid &_o_e) : f(_f), g(_g), h(_h), reflect_len(_l), e(_e), o_e(_o_e) { n = 1; while(n < sz) n *= 2; node.resize(2 * n - 1, e); lazy.resize(2 * n - 1, o_e); } void set(int k, const Monoid &x) { node[k + n - 1] = x; } void build() { for(int i = n - 2; i >= 0; i--) { node[i] = f(node[2 * i + 1], node[2 * i + 2]); } } // k番目のノードについて遅延評価 void eval(int k, int l, int r) { // 遅延配列を見て空でなかったら値を伝播 if(lazy[k] != o_e) { node[k] = g(node[k], reflect_len(lazy[k], r - l)); // 伝播 if(r - l > 1) { lazy[2 * k + 1] = h(lazy[2 * k + 1], lazy[k]); lazy[2 * k + 2] = h(lazy[2 * k + 2], lazy[k]); } } // 伝播の終了 lazy[k] = o_e; } Monoid at(int k) { return query(k, k + 1); } // [a,b)区間加算 void update(int a, int b, OperatorMonoid x, int k = 0, int l = 0, int r = -1) { if(r < 0) r = n; // まず評価 eval(k, l, r); // 範囲外なら何もしない if(b <= l || r <= a) return; // 完全に被覆 遅延配列に値を入れ評価 if(a <= l && r <= b) { lazy[k] = h(lazy[k], x); eval(k, l, r); } // そうでないとき // 子コードの値を再帰的に計算して計算済みの値をもってくる else { update(a, b, x, 2 * k + 1, l, (l + r) / 2); update(a, b, x, 2 * k + 2, (l + r) / 2, r); node[k] = f(node[2 * k + 1], node[2 * k + 2]); } } // [a,b)区間取得 Monoid query(int a, int b, int k = 0, int l = 0, int r = -1) { if(r < 0) r = n; // まず評価 eval(k, l, r); if(b <= l || r <= a) return e; if(a <= l && r <= b) return node[k]; Monoid vl = query(a, b, 2 * k + 1, l, (l + r) / 2); Monoid vr = query(a, b, 2 * k + 2, (l + r) / 2, r); return f(vl, vr); } }; template struct RAMQ : LazySegTree { using Segtree = LazySegTree; static auto f(T x1, T x2) { return min(x1, x2); } static auto g(T x, U a) { return x + a; } static auto h(U a, U b) { return a + b; } static auto l(U a, int len) { return a; } RAMQ(int n, const T &e = LINF, const U &o_e = 0) : Segtree(n, f, g, h, l, e, o_e) {} }; int main() { int N; cin >> N; vector A(N); rep(i, N) cin >> A[i]; int Q; cin >> Q; RAMQ ramq(N); rep(i, N) ramq.set(i, A[i]); ramq.build(); while(Q--) { ll k, l, r, c; cin >> k >> l >> r >> c; l--; if(k == 2) { cout << ramq.query(l, r) << endl; } else { ramq.update(l, r, c); } } }