#include //#include #define For(i, a, b) for (int(i) = (int)(a); (i) < (int)(b); ++(i)) #define rFor(i, a, b) for (int(i) = (int)(a)-1; (i) >= (int)(b); --(i)) #define rep(i, n) For((i), 0, (n)) #define rrep(i, n) rFor((i), (n), 0) #define fi first #define se second using namespace std; typedef long long lint; typedef unsigned long long ulint; typedef pair pii; typedef pair pll; template bool chmax(T &a, const T &b) { if (a < b) { a = b; return true; } return false; } template bool chmin(T &a, const T &b) { if (a > b) { a = b; return true; } return false; } template T div_floor(T a, T b) { if (b < 0) a *= -1, b *= -1; return a >= 0 ? a / b : (a + 1) / b - 1; } template T div_ceil(T a, T b) { if (b < 0) a *= -1, b *= -1; return a > 0 ? (a - 1) / b + 1 : a / b; } constexpr lint mod = 1000000007; constexpr lint INF = mod * mod; constexpr int MAX = 200010; #ifndef ATCODER_INTERNAL_BITOP_HPP #define ATCODER_INTERNAL_BITOP_HPP 1 #ifdef _MSC_VER #include #endif namespace atcoder { namespace internal { // @param n `0 <= n` // @return minimum non-negative `x` s.t. `n <= 2**x` int ceil_pow2(int n) { int x = 0; while ((1U << x) < (unsigned int)(n)) x++; return x; } // @param n `1 <= n` // @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0` int bsf(unsigned int n) { #ifdef _MSC_VER unsigned long index; _BitScanForward(&index, n); return index; #else return __builtin_ctz(n); #endif } } // namespace internal } // namespace atcoder #endif // ATCODER_INTERNAL_BITOP_HPP #ifndef ATCODER_LAZYSEGTREE_HPP #define ATCODER_LAZYSEGTREE_HPP 1 namespace atcoder { template struct lazy_segtree { public: lazy_segtree() : lazy_segtree(0) {} lazy_segtree(int n) : lazy_segtree(std::vector(n, e())) {} lazy_segtree(const std::vector &v) : _n(int(v.size())) { log = internal::ceil_pow2(_n); size = 1 << log; d = std::vector(2 * size, e()); lz = std::vector(size, id()); for (int i = 0; i < _n; i++) d[size + i] = v[i]; for (int i = size - 1; i >= 1; i--) { update(i); } } void set(int p, S x) { assert(0 <= p && p < _n); p += size; for (int i = log; i >= 1; i--) push(p >> i); d[p] = x; for (int i = 1; i <= log; i++) update(p >> i); } S get(int p) { assert(0 <= p && p < _n); p += size; for (int i = log; i >= 1; i--) push(p >> i); return d[p]; } S prod(int l, int r) { assert(0 <= l && l <= r && r <= _n); if (l == r) return e(); l += size; r += size; for (int i = log; i >= 1; i--) { if (((l >> i) << i) != l) push(l >> i); if (((r >> i) << i) != r) push(r >> i); } S sml = e(), smr = e(); while (l < r) { if (l & 1) sml = op(sml, d[l++]); if (r & 1) smr = op(d[--r], smr); l >>= 1; r >>= 1; } return op(sml, smr); } S all_prod() { return d[1]; } void apply(int p, F f) { assert(0 <= p && p < _n); p += size; for (int i = log; i >= 1; i--) push(p >> i); d[p] = mapping(f, d[p]); for (int i = 1; i <= log; i++) update(p >> i); } void apply(int l, int r, F f) { assert(0 <= l && l <= r && r <= _n); if (l == r) return; l += size; r += size; for (int i = log; i >= 1; i--) { if (((l >> i) << i) != l) push(l >> i); if (((r >> i) << i) != r) push((r - 1) >> i); } { int l2 = l, r2 = r; while (l < r) { if (l & 1) all_apply(l++, f); if (r & 1) all_apply(--r, f); l >>= 1; r >>= 1; } l = l2; r = r2; } for (int i = 1; i <= log; i++) { if (((l >> i) << i) != l) update(l >> i); if (((r >> i) << i) != r) update((r - 1) >> i); } } template int max_right(int l) { return max_right(l, [](S x) { return g(x); }); } template int max_right(int l, G g) { assert(0 <= l && l <= _n); assert(g(e())); if (l == _n) return _n; l += size; for (int i = log; i >= 1; i--) push(l >> i); S sm = e(); do { while (l % 2 == 0) l >>= 1; if (!g(op(sm, d[l]))) { while (l < size) { push(l); l = (2 * l); if (g(op(sm, d[l]))) { sm = op(sm, d[l]); l++; } } return l - size; } sm = op(sm, d[l]); l++; } while ((l & -l) != l); return _n; } template int min_left(int r) { return min_left(r, [](S x) { return g(x); }); } template int min_left(int r, G g) { assert(0 <= r && r <= _n); assert(g(e())); if (r == 0) return 0; r += size; for (int i = log; i >= 1; i--) push((r - 1) >> i); S sm = e(); do { r--; while (r > 1 && (r % 2)) r >>= 1; if (!g(op(d[r], sm))) { while (r < size) { push(r); r = (2 * r + 1); if (g(op(d[r], sm))) { sm = op(d[r], sm); r--; } } return r + 1 - size; } sm = op(d[r], sm); } while ((r & -r) != r); return 0; } private: int _n, size, log; std::vector d; std::vector lz; void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); } void all_apply(int k, F f) { d[k] = mapping(f, d[k]); if (k < size) lz[k] = composition(f, lz[k]); } void push(int k) { all_apply(2 * k, lz[k]); all_apply(2 * k + 1, lz[k]); lz[k] = id(); } }; } // namespace atcoder #endif // ATCODER_LAZYSEGTREE_HPP using namespace atcoder; struct monoid { lint val; static monoid op(monoid lhs, monoid rhs) { return {min(lhs.val, rhs.val)}; } static monoid e() { return {INF}; } }; struct op_monoid { lint sum; static monoid mapping(op_monoid lhs, monoid rhs) { return {rhs.val + lhs.sum}; } static op_monoid compression(op_monoid lhs, op_monoid rhs) { return {lhs.sum + rhs.sum}; } static op_monoid id() { return {0}; } }; template struct BinaryIndexedTree { vector node; BinaryIndexedTree(int n) { node.resize(n + 1, {}); } void update(int i, T x) { ++i; while (i < (int)node.size()) { node[i] += x; i += (i & -i); } } T query(int i) { ++i; lint ret = 0; while (i) { ret += node[i]; i -= (i & -i); } return ret; } T query(int l, int r) { return query(r - 1) - query(l - 1); } }; int main() { int n, q; scanf("%d%d", &n, &q); int a[n]; rep(i, n) scanf("%d", &a[i]), --a[i]; vector> query(q); // (id, [l, r)) rep(i, q) { int l, r; scanf("%d%d", &l, &r); --l; query[i] = {i, l, r}; } int width = 150; sort(query.begin(), query.end(), [&](const tuple &t1, const tuple &t2) { if (get<1>(t1) / width == get<1>(t2) / width) { return (get<1>(t1) / width) % 2 == 0 ? get<2>(t1) < get<2>(t2) : get<2>(t1) > get<2>(t2); } return get<1>(t1) / width < get<1>(t2) / width; }); int tl = 0, tr = 0; lint tmp = 0, ans[q]; BinaryIndexedTree bit_f(n), bit_b(n); vector v(n); rep(i, n) v[i] = {0}; lazy_segtree lst(v); rep(i, n) { tmp += bit_b.query(a[i] + 1, n); bit_b.update(a[i], 1); lst.apply(a[i] + 1, n, {1}); } for (auto [id, l, r] : query) { while (tr < r) { tmp -= bit_f.query(a[tr] + 1, n) + bit_b.query(0, a[tr]) + lst.all_prod().val * (tr - tl); bit_b.update(a[tr], -1); lst.apply(a[tr] + 1, n, {-1}); ++tr; tmp += lst.all_prod().val * (tr - tl); } while (tl > l) { --tl; tmp -= bit_f.query(a[tl] + 1, n) + bit_b.query(0, a[tl]) + lst.all_prod().val * (tr - tl - 1); bit_f.update(a[tl], -1); lst.apply(0, a[tl], {-1}); tmp += lst.all_prod().val * (tr - tl); } while (tr > r) { --tr; tmp -= lst.all_prod().val * (tr - tl - 1); tmp += bit_f.query(a[tr] + 1, n) + bit_b.query(0, a[tr]); bit_b.update(a[tr], 1); lst.apply(a[tr] + 1, n, {1}); tmp += lst.all_prod().val * (tr - tl); } while (tl < l) { tmp -= lst.all_prod().val * (tr - tl); tmp += bit_f.query(a[tl] + 1, n) + bit_b.query(0, a[tl]); bit_f.update(a[tl], 1); lst.apply(0, a[tl], {1}); ++tl; tmp += lst.all_prod().val * (tr - tl); } ans[id] = tmp; } rep(i, q) printf("%lld\n", ans[i]); }