use std::io::{Write, BufWriter}; // https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8 macro_rules! input { ($($r:tt)*) => { let stdin = std::io::stdin(); let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock())); let mut next = move || -> String{ bytes.by_ref().map(|r|r.unwrap() as char) .skip_while(|c|c.is_whitespace()) .take_while(|c|!c.is_whitespace()) .collect() }; input_inner!{next, $($r)*} }; } macro_rules! input_inner { ($next:expr) => {}; ($next:expr, ) => {}; ($next:expr, $var:ident : $t:tt $($r:tt)*) => { let $var = read_value!($next, $t); input_inner!{$next $($r)*} }; } macro_rules! read_value { ($next:expr, $t:ty) => ($next().parse::<$t>().expect("Parse error")); } /// Verified by https://atcoder.jp/contests/arc093/submissions/3968098 mod mod_int { use std::ops::*; pub trait Mod: Copy { fn m() -> i64; } #[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)] pub struct ModInt { pub x: i64, phantom: ::std::marker::PhantomData } impl ModInt { // x >= 0 pub fn new(x: i64) -> Self { ModInt::new_internal(x % M::m()) } fn new_internal(x: i64) -> Self { ModInt { x: x, phantom: ::std::marker::PhantomData } } pub fn pow(self, mut e: i64) -> Self { debug_assert!(e >= 0); let mut sum = ModInt::new_internal(1); let mut cur = self; while e > 0 { if e % 2 != 0 { sum *= cur; } cur *= cur; e /= 2; } sum } #[allow(dead_code)] pub fn inv(self) -> Self { self.pow(M::m() - 2) } } impl>> Add for ModInt { type Output = Self; fn add(self, other: T) -> Self { let other = other.into(); let mut sum = self.x + other.x; if sum >= M::m() { sum -= M::m(); } ModInt::new_internal(sum) } } impl>> Sub for ModInt { type Output = Self; fn sub(self, other: T) -> Self { let other = other.into(); let mut sum = self.x - other.x; if sum < 0 { sum += M::m(); } ModInt::new_internal(sum) } } impl>> Mul for ModInt { type Output = Self; fn mul(self, other: T) -> Self { ModInt::new(self.x * other.into().x % M::m()) } } impl>> AddAssign for ModInt { fn add_assign(&mut self, other: T) { *self = *self + other; } } impl>> SubAssign for ModInt { fn sub_assign(&mut self, other: T) { *self = *self - other; } } impl>> MulAssign for ModInt { fn mul_assign(&mut self, other: T) { *self = *self * other; } } impl Neg for ModInt { type Output = Self; fn neg(self) -> Self { ModInt::new(0) - self } } impl ::std::fmt::Display for ModInt { fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result { self.x.fmt(f) } } impl ::std::fmt::Debug for ModInt { fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result { let (mut a, mut b, _) = red(self.x, M::m()); if b < 0 { a = -a; b = -b; } write!(f, "{}/{}", a, b) } } impl From for ModInt { fn from(x: i64) -> Self { Self::new(x) } } // Finds the simplest fraction x/y congruent to r mod p. // The return value (x, y, z) satisfies x = y * r + z * p. fn red(r: i64, p: i64) -> (i64, i64, i64) { if r.abs() <= 10000 { return (r, 1, 0); } let mut nxt_r = p % r; let mut q = p / r; if 2 * nxt_r >= r { nxt_r -= r; q += 1; } if 2 * nxt_r <= -r { nxt_r += r; q -= 1; } let (x, z, y) = red(nxt_r, r); (x, y - q * z, z) } } // mod mod_int macro_rules! define_mod { ($struct_name: ident, $modulo: expr) => { #[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)] struct $struct_name {} impl mod_int::Mod for $struct_name { fn m() -> i64 { $modulo } } } } const MOD: i64 = 1_000_000_007; define_mod!(P, MOD); type MInt = mod_int::ModInt

; // The Aho-Corasick automaton construction. // Complexity: \sum |pat| * alpha fn aho_corasick(pat: &[Vec], alpha: usize) -> (Vec>, Vec) { let mut st = vec![vec![usize::MAX; alpha]]; let mut fin = vec![false]; let mut back = vec![0]; for p in pat { let mut cur = 0; for i in 0..p.len() { let c = p[i]; if st[cur][c] == usize::MAX { st.push(vec![usize::MAX; alpha]); fin.push(false); back.push(usize::MAX); st[cur][c] = st.len() - 1; } cur = st[cur][c]; } fin[cur] = true; } // fill in back links // Note: states are *not necessarily* topologically sorted! // Therefore, we need to use a queue. let mut que = std::collections::VecDeque::new(); que.push_back(0); while let Some(i) = que.pop_front() { assert_ne!(back[i], usize::MAX); if fin[back[i]] { fin[i] = true; } for j in 0..alpha { if st[i][j] != usize::MAX { let nxt = st[i][j]; que.push_back(nxt); if i == 0 { back[nxt] = 0; } else { let mut cur = back[i]; while st[cur][j] == usize::MAX && cur > 0 { assert_ne!(back[cur], usize::MAX); cur = back[cur]; } back[nxt] = [0, st[cur][j]][usize::from(st[cur][j] != usize::MAX)]; } } } } // fill in vacant transitions for i in 0..st.len() { for j in 0..alpha { if st[i][j] == usize::MAX { let mut cur = back[i]; while st[cur][j] == usize::MAX && cur > 0 { cur = back[cur]; } st[i][j] = [0, st[cur][j]][usize::from(st[cur][j] != usize::MAX)]; } } } (st, fin) } // Tags: aho-corasick, dp fn solve() { let out = std::io::stdout(); let mut out = BufWriter::new(out.lock()); macro_rules! puts { ($($format:tt)*) => (let _ = write!(out,$($format)*);); } #[allow(unused)] macro_rules! putvec { ($v:expr) => { for i in 0..$v.len() { puts!("{}{}", $v[i], if i + 1 == $v.len() {"\n"} else {" "}); } } } input! { n: usize, l: i64, r: i64, } let mut fibs = vec![]; { let mut a = 1; let mut b = 2; while a <= r { if l <= a { fibs.push(a.to_string().bytes().map(|x| (x - b'0') as usize) .collect::>()); } let c = a + b; a = b; b = c; } } eprintln!("fib = {:?}", fibs); // build an automaton let (trans, fin) = aho_corasick(&fibs, 10); let m = trans.len(); let mut dp = vec![vec![[MInt::new(0); 2]; m]; n + 1]; dp[0][0][0] += 1; for i in 0..n { for k in 0..m { let val0 = dp[i][k][0]; let val1 = dp[i][k][1]; for j in 0..10 { let to = trans[k][j]; if fin[to] { dp[i + 1][to][1] += val0 + val1; } else { dp[i + 1][to][0] += val0; dp[i + 1][to][1] += val1; } } } } let mut tot = MInt::new(0); for i in 0..m { tot += dp[n][i][0]; } puts!("{}\n", tot - 1); // remove 0 } fn main() { // In order to avoid potential stack overflow, spawn a new thread. let stack_size = 104_857_600; // 100 MB let thd = std::thread::Builder::new().stack_size(stack_size); thd.spawn(|| solve()).unwrap().join().unwrap(); }