#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; typedef long long ll; using ull = unsigned long long; template inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; } template inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; } template T gcd(T a, T b) { a = abs(a), b = abs(b); while (b > 0) { tie(a, b) = make_pair(b, a % b); } return a; } mt19937 rnd(chrono::steady_clock::now().time_since_epoch().count()); constexpr long long INF = 1LL << 60; constexpr int inf = 1000000007; //constexpr long long mod = 1000000007LL; constexpr long long mod = 998244353; constexpr int MAX = 1100000; struct Mo { int n; vector> lr; Mo(int n) :n(n) {} //[l, r) void add(int l, int r) { lr.emplace_back(l, r); } template void build(const AL& add_left, const AR& add_right, const EL& erase_left, const ER& erase_right, const O& out) { int query_size = lr.size(); int bs = n / min(n, (int)sqrt(query_size)); vector ord(query_size); iota(ord.begin(), ord.end(), 0); sort(ord.begin(), ord.end(), [&](auto a, auto b) { int a_block_index = lr[a].first / bs; int b_block_index = lr[b].first / bs; if (a_block_index != b_block_index) return a_block_index < b_block_index; else return (a_block_index & 1) ? lr[a].second > lr[b].second : lr[a].second < lr[b].second; }); int l = 0, r = 0; for (auto idx : ord) { while (l > lr[idx].first) add_left(--l); while (r < lr[idx].second) add_right(r++); while (l < lr[idx].first) erase_left(l++); while (r > lr[idx].second) erase_right(--r); out(idx); } } template void build(const A& add, const E& erase, const O& out) { build(add, add, erase, erase, out); } }; template struct BIT { int n; vector bit; BIT() :n(0) {} BIT(int _n) :n(_n) { bit = vector(n + 1); } void add1(int idx, T val) { for (int i = idx; i <= n; i += i & -i) bit[i] += val; } T sum1(int idx) { T res = 0; for (int i = idx; i > 0; i -= i & -i) res += bit[i]; return res; } //0-indexed void add(int idx, T val) { add1(idx + 1, val); } //0-indexed [left, right) T sum(int left, int right) { return sum1(right) - sum1(left); } int lower_bound(T x) { int res = 0; int k = 1; while (2 * k <= n) k <<= 1; for (; k > 0; k >>= 1) { if (res + k <= n and bit[res + k] < x) { x -= bit[res + k]; res += k; } } return res; } }; /** * @brief Lazy-Segment-Tree(遅延伝搬セグメント木) * @docs docs/lazy-segment-tree.md */ template< typename Monoid, typename OperatorMonoid, typename F, typename G, typename H > struct LazySegmentTree { int sz, height; vector< Monoid > data; vector< OperatorMonoid > lazy; const F f; const G g; const H h; const Monoid M1; const OperatorMonoid OM0; LazySegmentTree(int n, const F f, const G g, const H h, const Monoid& M1, const OperatorMonoid OM0) : f(f), g(g), h(h), M1(M1), OM0(OM0) { sz = 1; height = 0; while (sz < n) sz <<= 1, height++; data.assign(2 * sz, M1); lazy.assign(2 * sz, OM0); } void set(int k, const Monoid& x) { data[k + sz] = x; } void build() { for (int k = sz - 1; k > 0; k--) { data[k] = f(data[2 * k + 0], data[2 * k + 1]); } } inline void propagate(int k) { if (lazy[k] != OM0) { lazy[2 * k + 0] = h(lazy[2 * k + 0], lazy[k]); lazy[2 * k + 1] = h(lazy[2 * k + 1], lazy[k]); data[k] = apply(k); lazy[k] = OM0; } } inline Monoid apply(int k) { return lazy[k] == OM0 ? data[k] : g(data[k], lazy[k]); } inline void recalc(int k) { while (k >>= 1) data[k] = f(apply(2 * k + 0), apply(2 * k + 1)); } inline void thrust(int k) { for (int i = height; i > 0; i--) propagate(k >> i); } void update(int a, int b, const OperatorMonoid& x) { if (a >= b) return; thrust(a += sz); thrust(b += sz - 1); for (int l = a, r = b + 1; l < r; l >>= 1, r >>= 1) { if (l & 1) lazy[l] = h(lazy[l], x), ++l; if (r & 1) --r, lazy[r] = h(lazy[r], x); } recalc(a); recalc(b); } Monoid query(int a, int b) { if (a >= b) return M1; thrust(a += sz); thrust(b += sz - 1); Monoid L = M1, R = M1; for (int l = a, r = b + 1; l < r; l >>= 1, r >>= 1) { if (l & 1) L = f(L, apply(l++)); if (r & 1) R = f(apply(--r), R); } return f(L, R); } Monoid operator[](const int& k) { return query(k, k + 1); } }; template< typename Monoid, typename OperatorMonoid, typename F, typename G, typename H > LazySegmentTree< Monoid, OperatorMonoid, F, G, H > get_lazy_segment_tree (int N, const F& f, const G& g, const H& h, const Monoid& M1, const OperatorMonoid& OM0) { return { N, f, g, h, M1, OM0 }; } int main() { cin.tie(nullptr); ios::sync_with_stdio(false); int n, Q; cin >> n >> Q; BIT b1(n), b2(n); ll inv = 0; vector a(n); for (int i = 0; i < n; i++) cin >> a[i], a[i] -= 1; for (int i = 0; i < n; i++) { inv += b2.sum(a[i] + 1, n); b2.add(a[i], 1); } Mo mo(n); for (int i = 0; i < Q; i++) { int l, r; cin >> l >> r; l--; mo.add(l, r); } auto f = [&](ll a, ll b)->ll { return min(a, b); }; auto g = [&](ll a, ll b)->ll { return a + b; }; auto lsg = get_lazy_segment_tree(n, f, g, g, INF, 0); for (int i = 0; i < n; i++) lsg.set(i, 0); lsg.build(); for (int i = 0; i < n; i++) { lsg.update(a[i] + 1, n, 1); } vector res(Q); auto add_left = [&](int idx)->void { b1.add(a[idx], -1); inv -= b1.sum(a[idx] + 1, n) + b2.sum(0, a[idx]); lsg.update(0, a[idx], -1); }; auto add_right = [&](int idx)->void { b2.add(a[idx], -1); inv -= b1.sum(a[idx] + 1, n) + b2.sum(0, a[idx]); lsg.update(a[idx] + 1, n, -1); }; auto erase_left = [&](int idx)->void { b1.add(a[idx], 1); inv += b1.sum(a[idx] + 1, n) + b2.sum(0, a[idx]); lsg.update(0, a[idx], 1); }; auto erase_right = [&](int idx)->void { b2.add(a[idx], 1); inv += b1.sum(a[idx] + 1, n) + b2.sum(0, a[idx]); lsg.update(a[idx] + 1, n, 1); }; auto out = [&](int idx)->void { ll len = mo.lr[idx].second - mo.lr[idx].first; ll mn = lsg.query(0, n); res[idx] = inv + mn * len; }; mo.build(add_left, add_right, erase_left, erase_right, out); for (int i = 0; i < res.size(); i++) cout << res[i] << "\n"; }