#include #include #include template struct Edge { int src, dst; Cost cost; Edge() = default; Edge(int src, int dst, Cost cost = 1) : src(src), dst(dst), cost(cost){}; bool operator<(const Edge& e) const { return cost < e.cost; } bool operator>(const Edge& e) const { return cost > e.cost; } }; template struct Graph : public std::vector>> { Graph(int n = 0) : std::vector>>(n) {} void span(bool direct, int src, int dst, Cost cost = 1) { (*this)[src].emplace_back(src, dst, cost); if (!direct) (*this)[dst].emplace_back(dst, src, cost); } }; template struct HeavyLightDecomposition { // indexing // v: a vertex in original graph // i: assigned label of a vertex Graph graph; std::vector id, vs; // id: v -> i, vs: i -> v std::vector par, sz, head, dep, out; // these are all v-indexed // in equals to id int time; explicit HeavyLightDecomposition(const Graph& graph) : graph(graph), id(graph.size()), vs(graph.size()), par(graph.size()), sz(graph.size()), head(graph.size()), dep(graph.size()), out(graph.size()), time(0) { dfs_sz(0, -1, 0); head[0] = 0; dfs_hld(0, -1); } void dfs_sz(int v, int p, int d) { par[v] = p; sz[v] = 1; dep[v] = d; if (!graph[v].empty() && graph[v].front().dst == p) { std::swap(graph[v].front(), graph[v].back()); } for (auto& e : graph[v]) { if (e.dst == p) continue; dfs_sz(e.dst, v, d + 1); sz[v] += sz[e.dst]; // heavy edge first if (sz[graph[v].front().dst] < sz[e.dst]) { std::swap(graph[v].front(), e); } } } void dfs_hld(int v, int p) { id[v] = time++; vs[id[v]] = v; bool first = true; for (auto e : graph[v]) { if (e.dst == p) continue; head[e.dst] = (first ? head[v] : e.dst); first = false; dfs_hld(e.dst, v); } out[v] = time; } int lca(int u, int v) { while (true) { if (id[u] > id[v]) std::swap(u, v); if (head[u] == head[v]) return u; v = par[head[v]]; } } int dist(int u, int v) { return dep[u] + dep[v] - dep[lca(u, v)] * 2; } std::vector> path(int u, int v, bool is_edge) { std::vector> segs; while (true) { if (id[u] > id[v]) std::swap(u, v); if (head[u] == head[v]) { // when edge path, the lca has to be excluded segs.emplace_back(id[u] + is_edge, id[v] + 1); return segs; } segs.emplace_back(id[head[v]], id[v] + 1); v = par[head[v]]; } } std::pair subtree(int v, bool is_edge) { // when edge path, the root has to be excluded return {id[v] + is_edge, out[v]}; } }; template struct LazySegmentTree { using DMerger = std::function; using OMerger = std::function; using Applier = std::function; int length; T d_unit; E o_unit; std::vector dat; std::vector ope; DMerger dmerge; OMerger omerge; Applier app; explicit LazySegmentTree(int n, T d_unit, E o_unit, DMerger dmerge, OMerger omerge, Applier app) : length(1), d_unit(d_unit), o_unit(o_unit), dmerge(dmerge), omerge(omerge), app(app) { while (length < n) length <<= 1; dat.assign(length * 2, d_unit); ope.assign(length * 2, o_unit); } template explicit LazySegmentTree(const Container& elems, T d_unit, E o_unit, DMerger dmerge, OMerger omerge, Applier app) : length(1), d_unit(d_unit), o_unit(o_unit), dmerge(dmerge), omerge(omerge), app(app) { int n = elems.size(); while (length < n) length <<= 1; dat.assign(length * 2, d_unit); ope.assign(length * 2, o_unit); std::copy(elems.begin(), elems.end(), dat.begin() + length); for (int nidx = length - 1; nidx >= 1; --nidx) { T vl = dat[nidx * 2 + 0]; T vr = dat[nidx * 2 + 1]; dat[nidx] = dmerge(vl, vr); } } void propagate(int nidx, int len) { if (ope[nidx] == o_unit) return; // propagate if (len > 1) { ope[nidx * 2 + 0] = omerge(ope[nidx * 2 + 0], ope[nidx]); ope[nidx * 2 + 1] = omerge(ope[nidx * 2 + 1], ope[nidx]); } // update data dat[nidx] = app(dat[nidx], ope[nidx], len); ope[nidx] = o_unit; } void update(int ql, int qr, E e, int nidx, int nl, int nr) { propagate(nidx, nr - nl); if (nr <= ql || qr <= nl) return; if (ql <= nl && nr <= qr) { ope[nidx] = omerge(ope[nidx], e); propagate(nidx, nr - nl); return; } int nm = (nl + nr) / 2; update(ql, qr, e, nidx * 2 + 0, nl, nm); update(ql, qr, e, nidx * 2 + 1, nm, nr); // update data dat[nidx] = dmerge(dat[nidx * 2 + 0], dat[nidx * 2 + 1]); } void update(int ql, int qr, E e) { return update(ql, qr, e, 1, 0, length); } T fold(int ql, int qr, int nidx, int nl, int nr) { propagate(nidx, nr - nl); if (nr <= ql || qr <= nl) return d_unit; if (ql <= nl && nr <= qr) return dat[nidx]; int nm = (nl + nr) / 2; T vl = fold(ql, qr, nidx * 2 + 0, nl, nm); T vr = fold(ql, qr, nidx * 2 + 1, nm, nr); return dmerge(vl, vr); } T fold(int ql, int qr) { return fold(ql, qr, 1, 0, length); } T get(int idx) { return fold(idx, idx + 1); } T fold_all() { return fold(0, length); } }; using lint = long long; void solve() { int n, m, q; std::cin >> n >> m >> q; std::vector ps(m); for (auto& p : ps) { std::cin >> p; --p; } Graph<> graph(n); for (int i = n - 1; i--;) { int u, v; std::cin >> u >> v; graph.span(false, --u, --v); } HeavyLightDecomposition hld(graph); // range add range sum LazySegmentTree seg( n, 0, 0, [](auto a, auto b) { return a + b; }, [](auto e, auto f) { return e + f; }, [](auto a, auto e, int k) { return a + e * k; }); lint base = 0; auto vadd = [&](int v, int d) { base += hld.dep[v] * d; for (auto [l, r] : hld.path(0, v, false)) { seg.update(l, r, d); } }; for (auto p : ps) vadd(p, 1); while (q--) { int t; std::cin >> t; switch (t) { case 1: { int i, v; std::cin >> i >> v; --i, --v; auto& p = ps[i]; vadd(p, -1); p = v; vadd(p, 1); break; } case 2: { int v; std::cin >> v; --v; lint ans = base + lint(m) * hld.dep[v]; for (auto [l, r] : hld.path(0, v, false)) { ans -= seg.fold(l, r) * 2; } ans += seg.get(0) * 2; std::cout << ans << "\n"; break; } } } } int main() { std::cin.tie(nullptr); std::ios::sync_with_stdio(false); solve(); return 0; }