package main import ( "bufio" "fmt" "os" "sort" "strconv" ) var sc = bufio.NewScanner(os.Stdin) var wr = bufio.NewWriter(os.Stdout) func out(x ...interface{}) { fmt.Fprintln(wr, x...) } func getI() int { sc.Scan() i, e := strconv.Atoi(sc.Text()) if e != nil { panic(e) } return i } func getF() float64 { sc.Scan() i, e := strconv.ParseFloat(sc.Text(), 64) if e != nil { panic(e) } return i } func getInts(N int) []int { ret := make([]int, N) for i := 0; i < N; i++ { ret[i] = getI() } return ret } func getS() string { sc.Scan() return sc.Text() } // min, max, asub, absなど基本関数 func max(a, b int) int { if a > b { return a } return b } func min(a, b int) int { if a < b { return a } return b } func asub(a, b int) int { if a > b { return a - b } return b - a } func abs(a int) int { if a >= 0 { return a } return -a } func lowerBound(a []int, x int) int { idx := sort.Search(len(a), func(i int) bool { return a[i] >= x }) return idx } func upperBound(a []int, x int) int { idx := sort.Search(len(a), func(i int) bool { return a[i] > x }) return idx } // NextPermutation generates the next permutation of the // sortable collection x in lexical order. It returns false // if the permutations are exhausted. // // Knuth, Donald (2011), "Section 7.2.1.2: Generating All Permutations", // The Art of Computer Programming, volume 4A. // ※NextPermutationは辞書順で次を返す func NextPermutation(x sort.Interface) bool { n := x.Len() - 1 if n < 1 { return false } j := n - 1 for ; !x.Less(j, j+1); j-- { if j == 0 { return false } } l := n for !x.Less(j, l) { l-- } x.Swap(j, l) for k, l := j+1, n; k < l; { x.Swap(k, l) k++ l-- } return true } func main() { defer wr.Flush() sc.Split(bufio.ScanWords) sc.Buffer([]byte{}, 1000000) // this template is new version. // use getI(), getS(), getInts(), getF() N := getI() a := getInts(N) b := getInts(N) idx := make([]int, N) for i := 0; i < N; i++ { idx[i] = i } // out(a, b) ma := 0 m := make(map[int]int) for { cnt := 0 for i := 0; i < N; i++ { A := a[idx[i]] B := b[i] // out("AB", A, B) if A > B { cnt += A - B } } if ma < cnt { ma = cnt } m[cnt]++ // out(cnt, ma) if !NextPermutation(sort.IntSlice(idx)) { break } } out(m[ma]) }