//#include #include //#include using namespace std; //using namespace atcoder; typedef long long ll; typedef long double ld; typedef unsigned int uint; typedef unsigned long long ull; typedef pair p; const int INF = 1e9; const double eps = 1e-7; const ll LINF = ll(1e18); const int MOD = 1000000007; const int dx[4] = {0, 1, 0, -1}, dy[4] = {-1, 0, 1, 0}; const int Dx[8] = {0, 1, 1, 1, 0, -1, -1, -1}, Dy[8] = {-1, -1, 0, 1, 1, 1, 0, -1}; const long double pi = 4 * atan(1); #define yes cout << "Yes" << endl #define YES cout << "YES" << endl #define no cout << "No" << endl #define NO cout << "NO" << endl #define rep(i, n) for (int i = 0; i < n; i++) #define ALL(v) v.begin(), v.end() #define debug(v) \ cout << #v << ":"; \ for (auto x : v) \ { \ cout << x << ' '; \ } \ cout << endl; template bool chmax(T &a, const T &b) { if (a < b) { a = b; return 1; } return 0; } template bool chmin(T &a, const T &b) { if (b < a) { a = b; return 1; } return 0; } //cout< fac(2000001); //n!(mod M) vector ifac(2000001); //k!^{M-2} (mod M) ll mpow(ll x, ll n) { //x^n(mod M) ll ans = 1; while (n != 0) { if (n & 1) ans = ans * x % M; x = x * x % M; n = n >> 1; } return ans; } //conbination ll comb(ll a, ll b) { //aCb(mod M) if (a == 0 && b == 0) return 1; if (a < b || a < 0) return 0; ll tmp = ifac[a - b] * ifac[b] % M; return tmp * fac[a] % M; } //素因数分解o√n map prime_factor(int n) { map res; for (int i = 2; i * i <= n; i++) { while (n % i == 0) { ++res[i]; n /= i; } } if (n != 1) res[n] = 1; // for (int i = 2; i <= n; i++) //cout << res[i] << "\n"; return res; } //n! ll fact_mod(ll n) { ll ret = 1; for (ll i = 2; i <= n; i++) ret = ret * (i % MOD) % MOD; return ret; } // 繰り返し二乗法 ll pow_mod(ll x, ll n) { if (n == 0) return 1; ll ret = pow_mod((x * x) % MOD, n / 2); if (n & 1) ret = (ret * x) % MOD; return ret; } //nCr O(r) nがでかくても安心 ll combination_mod(ll n, ll r) { if (r > n - r) r = n - r; if (r == 0) return 1; ll a = 1; //a=n!/(n-r)!=n~n-r+1までの総積->O(r) for (ll i = 0; i < r; i++) a = a * ((n - i) % MOD) % MOD; //b=inv(r!) ll b = pow_mod(fact_mod(r), MOD - 2); return (a % MOD) * (b % MOD) % MOD; } ll inv_mod(ll n) { // フェルマーの小定理 return pow_mod(n, MOD - 2); } const int N_MAX = 1001; double pascal[N_MAX][N_MAX] = {}; // パスカルの三角形 // 確率Ver // n段目は 2^n で割った値が入る (横の和 = 1) //kが大きいときにO(n)でi+kCi (0 comb_recur(ll n, ll k) { vector res(n, 1); for (ll i = 1; i < n; i++) { res[i] *= (k + i); res[i] %= MOD; res[i] *= inv_mod(i); res[i] %= MOD; res[i] *= res[i - 1]; res[i] %= MOD; } return res; } int main() { cin.tie(0); ios::sync_with_stdio(false); ll n,m; cin>>n>>m; for(ll i=1;i<=m;i++){ if(2*i-1>n){ cout<<0<<"\n"; continue; } ll nm = (n-2*i+1)/i;//全体に配るよう ll nn = nm+1; ll ni = n-nm*i-2*i+1;//あまりを配る ll res = (mpow(nn+2,ni)*mpow(nn+1,i-ni-1))%MOD; res *=nn; cout<