from operator import itemgetter from itertools import * from bisect import * from collections import * from heapq import * import sys sys.setrecursionlimit(10**6) int1 = lambda x: int(x)-1 p2D = lambda x: print(*x, sep="\n") def II(): return int(sys.stdin.buffer.readline()) def MI(): return map(int, sys.stdin.buffer.readline().split()) def LI(): return list(map(int, sys.stdin.buffer.readline().split())) def LLI(rows_number): return [LI() for _ in range(rows_number)] def MI1(): return map(int1, sys.stdin.buffer.readline().split()) def LI1(): return list(map(int1, sys.stdin.buffer.readline().split())) def LLI1(rows_number): return [LI1() for _ in range(rows_number)] def BI(): return sys.stdin.buffer.readline().rstrip() def SI(): return sys.stdin.buffer.readline().rstrip().decode() def inval(ni, nj, h, w): if ni < 0 or ni >= h or nj < 0 or nj >= w: return True return False dij = [(0, 1), (-1, 0), (0, -1), (1, 0)] inf = 10**16 class Sieve: def __init__(self, n): self.plist = [2] # n以下の素数のリスト min_prime_factor = [2, 0]*(n//2+5) for x in range(3, n+1, 2): if min_prime_factor[x] == 0: min_prime_factor[x] = x self.plist.append(x) if x**2 > n: continue for y in range(x**2, n+5, 2*x): if min_prime_factor[y] == 0: min_prime_factor[y] = x self.min_prime_factor = min_prime_factor def isprime(self, x): return self.min_prime_factor[x] == x # これが素因数分解(prime factorization) def pfct(self, x): pp, ee = [], [] while x > 1: mpf = self.min_prime_factor[x] if pp and mpf == pp[-1]: ee[-1] += 1 else: pp.append(mpf) ee.append(1) x //= mpf return [(p, e) for p, e in zip(pp, ee)] n = II() sv = Sieve(300000) pp = sv.plist cnt = [0]*(2*n+1) ans = 0 for i, c in enumerate(pp[2:], 2): if c > n: break p1 = pp[i-1] for p2 in pp[:i-1]: cnt[p1+p2] += 1 for s in pp[i+1:]: if s-c < 4: continue if s-c > 2*n: break ans += cnt[s-c] print(ans)