#include using namespace std; using Int = long long; const char newl = '\n'; template inline void chmin(T1 &a,T2 b){if(a>b) a=b;} template inline void chmax(T1 &a,T2 b){if(a void drop(const T &x){cout< vector read(size_t n){ vector ts(n); for(size_t i=0;i>ts[i]; return ts; } // O(m^2 \log m \log U) // U: maximum capacity enum Objective{ MINIMIZE = +1, MAXIMIZE = -1, }; template struct MinCostFlow{ template inline void chmin(T &x,T y){x=min(x,y);} struct Edge{ int src,dst; Flow flow,cap; Cost cost; int rev; Edge(int src,int dst,Flow cap,Cost cost,int rev): src(src),dst(dst),flow(0),cap(cap),cost(cost),rev(rev){} Flow residual_cap()const{return cap-flow;} }; struct EdgePtr{ int v,e; EdgePtr(int v,int e):v(v),e(e){} }; int n; vector> G; vector b; vector p; MinCostFlow(int n):n(n),G(n),b(n,0){} EdgePtr add_edge(int src,int dst,Flow lower,Flow upper,Cost cost){ int e=G[src].size(); int r=(src==dst?e+1:G[dst].size()); assert(lower<=upper); G[src].emplace_back(src,dst,+upper,+cost*objective,r); G[dst].emplace_back(dst,src,-lower,-cost*objective,e); return EdgePtr(src,e); } const Edge &get_edge(EdgePtr ep)const{return G[ep.v][ep.e];} void push(Edge &e,Flow amount){ e.flow+=amount; G[e.dst][e.rev].flow-=amount; } void add_supply(int v,Flow amount){b[v]+=amount;} void add_demand(int v,Flow amount){b[v]-=amount;} Cost residual_cost(const Edge &e){ return e.cost+p[e.src]-p[e.dst]; } vector excess_vs,deficit_vs; void saturate_negative(const Flow delta){ for(auto &es:G){ for(auto &e:es){ Flow cap=e.residual_cap(); cap-=cap%delta; if(cap<0 or residual_cost(e)<0){ push(e,cap); b[e.src]-=cap; b[e.dst]+=cap; } } } excess_vs.clear(); deficit_vs.clear(); for(int v=0;v0) excess_vs.emplace_back(v); if(b[v]<0) deficit_vs.emplace_back(v); } } const Cost unreachable = std::numeric_limits::max(); Cost farthest; vector dist; vector parent; struct P{ Cost first; int second; P(Cost first,int second):first(first),second(second){} bool operator<(const P o)const{return first>o.first;} }; priority_queue

pq; template void eliminate(vector &vs,Predicate predicate){ vs.erase(remove_if(begin(vs),end(vs),predicate),end(vs)); } bool dual(const Flow delta){ eliminate(excess_vs, [&](int v){return b[v]<+delta;}); eliminate(deficit_vs,[&](int v){return b[v]>-delta;}); dist.assign(n,unreachable); for(int v:excess_vs) pq.emplace(dist[v]=0,v); parent.assign(n,nullptr); auto emplace=[&](Edge& e){ if(e.residual_cap()=dist[e.dst]) return; pq.emplace(dist[e.dst]=nxt,e.dst); parent[e.dst]=&e; }; farthest=0; int deficit_count=0; while(!pq.empty()){ Cost d=pq.top().first; int v=pq.top().second; pq.pop(); if(dist[v]=(int)deficit_vs.size()) break; for(auto &e:G[v]) emplace(e); } pq=decltype(pq)(); for(int v=0;v0; } void primal(const Flow delta){ for(int t:deficit_vs){ if(dist[t]>farthest) continue; Flow f=-b[t]; int v; for(v=t;parent[v];v=parent[v]->src) chmin(f,parent[v]->residual_cap()); chmin(f,b[v]); f-=f%delta; if(f<=0) continue; for(v=t;parent[v];){ auto &e=*parent[v]; push(e,f); int u=parent[v]->src; if(e.residual_cap()<=0) parent[v]=nullptr; v=u; } b[t]+=f; b[v]-=f; } } template bool build(){ p.resize(n); Flow max_flow=1; for(auto t:b) max_flow=max({max_flow,t,-t}); for(auto &es:G) for(auto &e:es) max_flow=max({max_flow,e.residual_cap(),-e.residual_cap()}); Flow delta=1; while(delta T get_cost(){ T res=0; for(auto &es:G) for(auto &e:es) res+=T(e.flow)*T(e.cost)/T(objective); return res/T(2); } template T get_gain(){return get_cost();} vector get_potential(){ fill(p.begin(),p.end(),0); for(int i=0;i0) chmin(p[e.dst],p[e.src]+e.cost); return p; } }; template using MaxGainFlow = MinCostFlow; //INSERT ABOVE HERE signed main(){ cin.tie(0); ios::sync_with_stdio(0); using ll = long long; int n; cin>>n; string s; cin>>s; auto vs=read(n); int S=2*n,T=2*n+1; MaxGainFlow G(2*n+2); map pos; const string yuki = "yuki"; for(char c:yuki) pos[c]=n; for(int i=n-1;i>=0;i--){ char c=s[i]; if(pos[c]