#include using namespace std; using ll = long long; using pii = pair; template using V = vector; template using VV = V>; #define pb push_back #define eb emplace_back #define mp make_pair #define fi first #define se second #define rep(i, n) rep2(i, 0, n) #define rep2(i, m, n) for (int i = m; i < (n); i++) #define per(i, b) per2(i, 0, b) #define per2(i, a, b) for (int i = int(b) - 1; i >= int(a); i--) #define ALL(c) (c).begin(), (c).end() #define SZ(x) ((int)(x).size()) constexpr ll TEN(int n) { return (n == 0) ? 1 : 10 * TEN(n - 1); } template void chmin(T &t, const U &u) { if (t > u) t = u; } template void chmax(T &t, const U &u) { if (t < u) t = u; } template ostream &operator<<(ostream &os, const pair &p) { os << "(" << p.first << "," << p.second << ")"; return os; } template ostream &operator<<(ostream &os, const vector &v) { os << "{"; rep(i, v.size()) { if (i) os << ","; os << v[i]; } os << "}"; return os; } #ifdef LOCAL void debug_out() { cerr << endl; } template void debug_out(Head H, Tail... T) { cerr << " " << H; debug_out(T...); } #define debug(...) \ cerr << __LINE__ << " [" << #__VA_ARGS__ << "]:", debug_out(__VA_ARGS__) #define dump(x) cerr << __LINE__ << " " << #x << " = " << (x) << endl #else #define debug(...) (void(0)) #define dump(x) (void(0)) #endif using R = __int128_t; template // capacity, distance struct MinCostFlow { struct edge { int to, rev; C cap; D cost; edge(int to, C cap, D cost, int rev) : to(to), cap(cap), cost(cost), rev(rev){}; }; using E = edge; const D INF = numeric_limits::max() / D(3); int n; VV g; V h, dst; V prevv, preve; MinCostFlow(int n) : n(n), g(n), h(n), dst(n), prevv(n), preve(n) {} void add_edge(int f, int t, C cap, D cost) { g[f].emplace_back(t, cap, cost, (int)g[t].size()); g[t].emplace_back(f, 0, -cost, (int)g[f].size() - 1); } // true : no negative cycle bool init_negative(int s) { fill(h.begin(), h.end(), INF); h[s] = 0; for (int t = 0; t <= n; ++t) { for (int i = 0; i < n; ++i) { for (auto e : g[i]) { if (!e.cap) continue; if (h[e.to] > h[i] + e.cost && t == n) { return false; } h[e.to] = min(h[e.to], h[i] + e.cost); } } } return true; } D exec(int s, int t, C f) { D res = 0; using Data = pair; while (f > 0) { priority_queue, greater> que; fill(dst.begin(), dst.end(), INF); dst[s] = 0; que.push(Data(0, s)); while (!que.empty()) { auto p = que.top(); que.pop(); int v = p.second; if (dst[v] < p.first) continue; rep(i, g[v].size()) { auto e = g[v][i]; D nd = dst[v] + e.cost + h[v] - h[e.to]; if (e.cap > 0 && dst[e.to] > nd) { dst[e.to] = nd; prevv[e.to] = v; preve[e.to] = i; que.push(Data(dst[e.to], e.to)); } } } if (dst[t] >= INF) return res; rep(i, n) h[i] += dst[i]; C d = f; for (int v = t; v != s; v = prevv[v]) { d = min(d, g[prevv[v]][preve[v]].cap); } f -= d; res += d * h[t]; if (h[t] >= 0) break; for (int v = t; v != s; v = prevv[v]) { edge &e = g[prevv[v]][preve[v]]; e.cap -= d; g[v][e.rev].cap += d; } } return res; } }; const string T = "yuki"; int main() { int N; string S; cin >> N >> S; V a(N); rep(i, N) cin >> a[i]; int cnt = N * 5; MinCostFlow g(cnt); rep(i, N - 1) { rep(j, 5) { g.add_edge(j * N + i, j * N + i + 1, N, 0); } } rep(i, N) { rep(j, 4) { if (S[i] == T[j]) { g.add_edge(j * N + i, (j + 1) * N + i, 1, -a[i]); } } } g.init_negative(0); cout << -ll(g.exec(0, 5 * N - 1, N)) << endl; return 0; }