#include namespace atcoder { template struct mcf_graph { public: mcf_graph() {} mcf_graph(int n) : _n(n), g(n) {} int add_edge(int from, int to, Cap cap, Cost cost) { assert(0 <= from && from < _n); assert(0 <= to && to < _n); int m = int(pos.size()); pos.push_back({from, int(g[from].size())}); int from_id = int(g[from].size()); int to_id = int(g[to].size()); if (from == to) to_id++; g[from].push_back(_edge{to, to_id, cap, cost}); g[to].push_back(_edge{from, from_id, 0, -cost}); return m; } struct edge { int from, to; Cap cap, flow; Cost cost; }; edge get_edge(int i) { int m = int(pos.size()); assert(0 <= i && i < m); auto _e = g[pos[i].first][pos[i].second]; auto _re = g[_e.to][_e.rev]; return edge{ pos[i].first, _e.to, _e.cap + _re.cap, _re.cap, _e.cost, }; } std::vector edges() { int m = int(pos.size()); std::vector result(m); for (int i = 0; i < m; i++) { result[i] = get_edge(i); } return result; } std::pair flow(int s, int t) { return flow(s, t, std::numeric_limits::max()); } std::pair flow(int s, int t, Cap flow_limit) { return slope(s, t, flow_limit).back(); } std::vector> slope(int s, int t) { return slope(s, t, std::numeric_limits::max()); } std::vector> slope(int s, int t, Cap flow_limit) { assert(0 <= s && s < _n); assert(0 <= t && t < _n); assert(s != t); // variants (C = maxcost): // -(n-1)C <= dual[s] <= dual[i] <= dual[t] = 0 // reduced cost (= e.cost + dual[e.from] - dual[e.to]) >= 0 for all edge std::vector dual(_n, 0), dist(_n); std::vector pv(_n), pe(_n); std::vector vis(_n); auto dual_ref = [&]() { std::fill(dist.begin(), dist.end(), std::numeric_limits::max()); std::fill(pv.begin(), pv.end(), -1); std::fill(pe.begin(), pe.end(), -1); std::fill(vis.begin(), vis.end(), false); struct Q { Cost key; int to; bool operator<(Q r) const { return key > r.key; } }; std::priority_queue que; dist[s] = 0; que.push(Q{0, s}); while (!que.empty()) { int v = que.top().to; que.pop(); if (vis[v]) continue; vis[v] = true; if (v == t) break; // dist[v] = shortest(s, v) + dual[s] - dual[v] // dist[v] >= 0 (all reduced cost are positive) // dist[v] <= (n-1)C for (int i = 0; i < int(g[v].size()); i++) { auto e = g[v][i]; if (vis[e.to] || !e.cap) continue; // |-dual[e.to] + dual[v]| <= (n-1)C // cost <= C - -(n-1)C + 0 = nC Cost cost = e.cost - dual[e.to] + dual[v]; if (dist[e.to] - dist[v] > cost) { dist[e.to] = dist[v] + cost; pv[e.to] = v; pe[e.to] = i; que.push(Q{dist[e.to], e.to}); } } } if (!vis[t]) { return false; } for (int v = 0; v < _n; v++) { if (!vis[v]) continue; // dual[v] = dual[v] - dist[t] + dist[v] // = dual[v] - (shortest(s, t) + dual[s] - dual[t]) + // (shortest(s, v) + dual[s] - dual[v]) = - shortest(s, t) + // dual[t] + shortest(s, v) = shortest(s, v) - shortest(s, t) >= // 0 - (n-1)C dual[v] -= dist[t] - dist[v]; } return true; }; Cap flow = 0; Cost cost = 0, prev_cost_per_flow = -1; std::vector> result; result.push_back({flow, cost}); while (flow < flow_limit) { if (!dual_ref()) break; Cap c = flow_limit - flow; for (int v = t; v != s; v = pv[v]) { c = std::min(c, g[pv[v]][pe[v]].cap); } for (int v = t; v != s; v = pv[v]) { auto& e = g[pv[v]][pe[v]]; e.cap -= c; g[v][e.rev].cap += c; } Cost d = -dual[s]; flow += c; cost += c * d; if (prev_cost_per_flow == d) { result.pop_back(); } result.push_back({flow, cost}); prev_cost_per_flow = d; } return result; } private: int _n; struct _edge { int to, rev; Cap cap; Cost cost; }; std::vector> pos; std::vector> g; }; } // namespace atcoder template struct min_cost_b_flow { struct result { bool feasible; Cost cost; std::vector flow; std::vector dual; }; min_cost_b_flow() {} explicit min_cost_b_flow(int n) : g(n + 2), b(n) {} int size() const { return std::size(b); } int add_edge(int src, int dst, Cap lower, Cap upper, Cost cost) { assert(0 <= src), assert(src < size()); assert(0 <= dst), assert(dst < size()); assert(lower <= upper); if (rev.push_back(cost < 0), rev.back()) { std::swap(src, dst); std::tie(lower, upper) = std::pair{-upper, -lower}; cost = -cost; } b[src] -= lower; b[dst] += lower; res.cost += lower * cost; res.flow.push_back(lower); return g.add_edge(src, dst, upper - lower, cost); } void add_supply(int v, Cap x) { assert(0 <= v), assert(v < size()); b[v] += x; } void add_demand(int v, Cap x) { assert(0 <= v), assert(v < size()); b[v] -= x; } result flow() { int source = size(), sink = source + 1; Cap positive{}, negative{}; for (int v = 0; v < size(); ++v) if (b[v] > 0) { g.add_edge(source, v, b[v], 0); positive += b[v]; } else if (b[v] < 0) { g.add_edge(v, sink, -b[v], 0); negative += -b[v]; } if (positive != negative) return {}; auto [flow, cost] = g.flow(source, sink); if (flow < positive) return {}; res.feasible = true; res.cost += cost; std::vector>> h(size()); for (int i = 0; i < int(std::size(res.flow)); ++i) { auto e = g.get_edge(i); if (e.flow < e.cap) h[e.from].emplace_back(e.to, e.cost); if (e.flow > 0) h[e.to].emplace_back(e.from, -e.cost); res.flow[i] += e.flow; if (rev[i]) res.flow[i] = -res.flow[i]; } res.dual.resize(size()); std::vector que(size()); std::iota(begin(que), end(que), 0); std::vector in_que(size(), true); for (int bg = 0; bg < int(std::size(que));) { int v = que[bg++]; in_que[v] = false; for (auto [u, c] : h[v]) { if (res.dual[v] + c < res.dual[u]) { res.dual[u] = res.dual[v] + c; if (not in_que[u]) in_que[u] = true, que.push_back(u); } } } return res; } private: atcoder::mcf_graph g; std::vector b; std::vector rev; result res{}; }; #pragma region my_template struct Rep { struct I { int i; void operator++() { ++i; } int operator*() const { return i; } bool operator!=(I o) const { return i < *o; } }; const int l, r; Rep(int _l, int _r) : l(_l), r(_r) {} Rep(int n) : Rep(0, n) {} I begin() const { return {l}; } I end() const { return {r}; } }; struct Per { struct I { int i; void operator++() { --i; } int operator*() const { return i; } bool operator!=(I o) const { return i > *o; } }; const int l, r; Per(int _l, int _r) : l(_l), r(_r) {} Per(int n) : Per(0, n) {} I begin() const { return {r - 1}; } I end() const { return {l - 1}; } }; template struct Fix : private F { Fix(F f) : F(f) {} template decltype(auto) operator()(Args&&... args) const { return F::operator()(*this, std::forward(args)...); } }; template T scan() { T res; std::cin >> res; return res; } template bool chmin(T& a, U&& b) { return b < a ? a = std::forward(b), true : false; } template bool chmax(T& a, U&& b) { return a < b ? a = std::forward(b), true : false; } #ifndef LOCAL #define DUMP(...) void(0) template constexpr int OjLocal = OnlineJudge; #endif using namespace std; #define ALL(c) begin(c), end(c) #pragma endregion int main() { cin.tie(nullptr)->sync_with_stdio(false); cout << fixed << setprecision(20); int n = scan(); auto s = scan(); vector a(n); generate(ALL(a), scan<>); min_cost_b_flow g(2 * n + 2); for (int i : Rep(n)) { g.add_edge(2 * i, 2 * i + 1, 0, 1, -a[i]); if (s[i] == 'y') { g.add_edge(2 * n, 2 * i, 0, 1, 0); for (int j : Rep(i + 1, n)) if (s[j] == 'u') g.add_edge(2 * i + 1, 2 * j, 0, 1, 0); } else if (s[i] == 'u') { for (int j : Rep(i + 1, n)) if (s[j] == 'k') g.add_edge(2 * i + 1, 2 * j, 0, 1, 0); } else if (s[i] == 'k') { for (int j : Rep(i + 1, n)) if (s[j] == 'i') g.add_edge(2 * i + 1, 2 * j, 0, 1, 0); } else if (s[i] == 'i') { g.add_edge(2 * i + 1, 2 * n + 1, 0, 1, 0); } else assert(false); } g.add_edge(2 * n + 1, 2 * n, 0, n, 0); cout << -g.flow().cost << '\n'; }