#include using namespace std; __attribute__((constructor)) void fast_io() { ios::sync_with_stdio(false); cin.tie(nullptr); } template struct mcf_graph { public: mcf_graph() {} mcf_graph(int n) : _n(n), g(n), neg(false) {} int add_edge(int from, int to, Cap cap, Cost cost) { assert(0 <= from && from < _n); assert(0 <= to && to < _n); assert(0 <= cap); if (cost < 0) neg = true; int m = int(pos.size()); pos.push_back({from, int(g[from].size())}); int from_id = int(g[from].size()); int to_id = int(g[to].size()); if (from == to) to_id++; g[from].push_back(_edge{to, to_id, cap, cost}); g[to].push_back(_edge{from, from_id, 0, -cost}); return m; } struct edge { int from, to; Cap cap, flow; Cost cost; }; edge get_edge(int i) { int m = int(pos.size()); assert(0 <= i && i < m); auto _e = g[pos[i].first][pos[i].second]; auto _re = g[_e.to][_e.rev]; return edge{ pos[i].first, _e.to, _e.cap + _re.cap, _re.cap, _e.cost, }; } std::vector edges() { int m = int(pos.size()); std::vector result(m); for (int i = 0; i < m; i++) { result[i] = get_edge(i); } return result; } std::pair flow(int s, int t) { return flow(s, t, std::numeric_limits::max()); } std::pair flow(int s, int t, Cap flow_limit) { return slope(s, t, flow_limit).back(); } std::vector> slope(int s, int t) { return slope(s, t, std::numeric_limits::max()); } std::vector> slope(int s, int t, Cap flow_limit) { assert(0 <= s && s < _n); assert(0 <= t && t < _n); assert(s != t); std::vector dual(_n, 0), dist(_n); std::vector pv(_n), pe(_n); std::vector vis(_n); auto neg_dual_ref = [&]() { std::fill(dist.begin(), dist.end(), std::numeric_limits::max()); std::fill(pv.begin(), pv.end(), -1); std::fill(pe.begin(), pe.end(), -1); dist[s] = 0; bool update = true; while (update) { update = false; for (int v = 0; v < _n; v++) { if (dist[v] == numeric_limits::max()) continue; for (int i = 0; i < int(g[v].size()); ++i) { auto e = g[v][i]; if (!e.cap) continue; if (dist[e.to] > dist[v] + e.cost) { dist[e.to] = dist[v] + e.cost; pv[e.to] = v; pe[e.to] = i; update = true; } } } } if (dist[t] == numeric_limits::max()) return false; for (int v = 0; v < _n; ++v) { if (dist[v] == numeric_limits::max()) continue; dual[v] -= dist[t] - dist[v]; } return true; }; auto dual_ref = [&]() { std::fill(dist.begin(), dist.end(), std::numeric_limits::max()); std::fill(pv.begin(), pv.end(), -1); std::fill(pe.begin(), pe.end(), -1); std::fill(vis.begin(), vis.end(), false); struct Q { Cost key; int to; bool operator<(Q r) const { return key > r.key; } }; std::priority_queue que; dist[s] = 0; que.push(Q{0, s}); while (!que.empty()) { int v = que.top().to; que.pop(); if (vis[v]) continue; vis[v] = true; if (v == t) break; for (int i = 0; i < int(g[v].size()); i++) { auto e = g[v][i]; if (vis[e.to] || !e.cap) continue; Cost cost = e.cost - dual[e.to] + dual[v]; if (dist[e.to] - dist[v] > cost) { dist[e.to] = dist[v] + cost; pv[e.to] = v; pe[e.to] = i; que.push(Q{dist[e.to], e.to}); } } } if (!vis[t]) { return false; } for (int v = 0; v < _n; v++) { if (!vis[v]) continue; dual[v] -= dist[t] - dist[v]; } return true; }; Cap flow = 0; Cost cost = 0, prev_cost_per_flow = -1; std::vector> result; result.push_back({flow, cost}); bool first = true; while (flow < flow_limit) { if (first && neg) { if (!neg_dual_ref()) break; first = false; } else { if (!dual_ref()) break; } Cap c = flow_limit - flow; for (int v = t; v != s; v = pv[v]) { c = std::min(c, g[pv[v]][pe[v]].cap); } for (int v = t; v != s; v = pv[v]) { auto& e = g[pv[v]][pe[v]]; e.cap -= c; g[v][e.rev].cap += c; } Cost d = -dual[s]; flow += c; cost += c * d; if (prev_cost_per_flow == d) { result.pop_back(); } result.push_back({flow, cost}); prev_cost_per_flow = d; } return result; } private: int _n; struct _edge { int to, rev; Cap cap; Cost cost; }; std::vector> pos; std::vector> g; bool neg; }; int main() { int n; string s; cin >> n >> s; vector v(n); for (auto& vi : v) cin >> vi; mcf_graph g(n + 2); int a = n, b = n + 1; int Y = -1, U = -1, K = -1, I = -1; for (int i = n-1; i >= 0; --i) { if (s[i] == 'i') { g.add_edge(i, b, 1, -v[i]); if (I != -1) g.add_edge(i, I, INT_MAX, 0); I = i; } else if (s[i] == 'k') { if (K != -1) g.add_edge(i, K, INT_MAX, 0); if (I != -1) g.add_edge(i, I, 1, -v[i]); K = i; } else if (s[i] == 'u') { if (U != -1) g.add_edge(i, U, INT_MAX, 0); if (K != -1) g.add_edge(i, K, 1, -v[i]); U = i; } else if (s[i] == 'y') { if (Y != -1) g.add_edge(i, Y, INT_MAX, 0); if (U != -1) g.add_edge(i, U, 1, -v[i]); Y = i; } } if (Y != -1) g.add_edge(a, Y, INT_MAX, 0); auto [_, ans] = g.flow(a, b); ans = -ans; cout << ans << '\n'; }