{-# LANGUAGE BangPatterns #-} {-# LANGUAGE FlexibleInstances #-} module Main where import Control.Monad import Control.Monad.Cont import Control.Monad.Fix import Control.Monad.ST import Control.Monad.State import qualified Data.ByteString.Char8 as BSC8 import Data.Char import Data.Coerce import Data.IORef import qualified Data.Vector.Fusion.Stream.Monadic as VFSM import qualified Data.Vector.Generic as VG import qualified Data.Vector.Generic.Mutable as VGM import qualified Data.Vector.Unboxed as VU main :: IO () main = do n <- readLn :: IO Int a <- quickSort <$> parseN1 n check <- newIORef True rep (n - 1) $ \i -> when (a VU.! i == a VU.! (i + 1) - 1) $ writeIORef check False b <- readIORef check if b then putStrLn "1" else putStrLn "2" type CParser a = StateT BSC8.ByteString Maybe a runCParser :: CParser a -> BSC8.ByteString -> Maybe (a, BSC8.ByteString) runCParser = runStateT {-# INLINE runCParser #-} int :: CParser Int int = coerce $ BSC8.readInt . BSC8.dropWhile isSpace {-# INLINE int #-} parseN1 :: Int -> IO (VU.Vector Int) parseN1 n = VU.unfoldrN n (runCParser int) <$> BSC8.getContents {-# INLINE parseN1 #-} quickSort :: (Ord a, VG.Vector v a) => v a -> v a quickSort = quickSortBy compare quickSortBy :: VG.Vector v a => (a -> a -> Ordering) -> v a -> v a quickSortBy cmp = VG.modify $ fix $ \loop vec -> when (VGM.length vec > 1) $ do pivot <- getMedian3Pivot cmp vec cut <- pivotPartition cmp vec pivot loop (VGM.unsafeDrop cut vec) loop (VGM.unsafeTake cut vec) {-# INLINE quickSortBy #-} pivotPartition :: (VGM.MVector mv a) => (a -> a -> Ordering) -> mv s a -> a -> ST s Int pivotPartition cmp vec pivot = fix `flip` 0 `flip` VGM.length vec $ \loop !l !r -> do !l' <- flip fix l $ \loopL !i -> do x <- VGM.unsafeRead vec i case cmp x pivot of LT -> loopL (i + 1) _ -> return i !r' <- flip fix (r - 1) $ \loopR !i -> do x <- VGM.unsafeRead vec i case cmp pivot x of LT -> loopR (i - 1) _ -> return i if l' < r' then do VGM.unsafeSwap vec l' r' loop (l' + 1) r' else return l' {-# INLINE pivotPartition #-} getMedian3Pivot :: (VGM.MVector mv a) => (a -> a -> Ordering) -> mv s a -> ST s a getMedian3Pivot cmp vec = median cmp <$> VGM.unsafeRead vec 0 <*> VGM.unsafeRead vec (VGM.length vec `quot` 2) <*> VGM.unsafeRead vec (VGM.length vec - 1) {-# INLINE getMedian3Pivot #-} median :: (a -> a -> Ordering) -> a -> a -> a -> a median cmp x y z = case cmp x y of LT -> case cmp y z of LT -> y _ -> case cmp x z of LT -> z _ -> x _ -> case cmp x z of LT -> x _ -> case cmp y z of LT -> z _ -> y {-# INLINE median #-} -- | l -> x -> r, +d stream :: Monad m => Int -> Int -> Int -> VFSM.Stream m Int stream !l !r !d = VFSM.Stream step l where step x | x <= r = return $ VFSM.Yield x (x + d) | otherwise = return VFSM.Done {-# INLINE [0] step #-} {-# INLINE [1] stream #-} -- | 0 <= x < n, interval = 1 rep :: Monad m => Int -> (Int -> m ()) -> m () rep n = flip VFSM.mapM_ (stream 0 (n - 1) 1) {-# INLINE rep #-} -- | 0 <= x <= n, interval = 1 rep' :: Monad m => Int -> (Int -> m ()) -> m () rep' n = flip VFSM.mapM_ (stream 0 n 1) {-# INLINE rep' #-} -- | 1 <= x < n, interval = 1 rep1 :: Monad m => Int -> (Int -> m ()) -> m () rep1 n = flip VFSM.mapM_ (stream 1 (n - 1) 1) {-# INLINE rep1 #-} -- | 1 <= x <= n, interval = 1 rep1' :: Monad m => Int -> (Int -> m ()) -> m () rep1' n = flip VFSM.mapM_ (stream 1 n 1) {-# INLINE rep1' #-} -- | l <= x <= r, interval = d for :: Monad m => Int -> Int -> Int -> (Int -> m ()) -> m () for l r d = flip VFSM.mapM_ (stream l r d) {-# INLINE for #-} -- | r -> x -> l, -d streamR :: Monad m => Int -> Int -> Int -> VFSM.Stream m Int streamR !r !l !d = VFSM.Stream step r where step x | x >= l = return $ VFSM.Yield x (x - d) | otherwise = return VFSM.Done {-# INLINE [0] step #-} {-# INLINE [1] streamR #-} -- | n > x >= 0, interval = -1 rev :: Monad m => Int -> (Int -> m ()) -> m () rev n = flip VFSM.mapM_ (streamR (n - 1) 0 1) {-# INLINE rev #-} -- | n >= x >= 0, interval = -1 rev' :: Monad m => Int -> (Int -> m ()) -> m () rev' n = flip VFSM.mapM_ (streamR n 0 1) {-# INLINE rev' #-} -- | n > x >= 1, interval = -1 rev1 :: Monad m => Int -> (Int -> m ()) -> m () rev1 n = flip VFSM.mapM_ (streamR (n - 1) 1 1) {-# INLINE rev1 #-} -- | n >= x >= 1, interval = -1 rev1' :: Monad m => Int -> (Int -> m ()) -> m () rev1' n = flip VFSM.mapM_ (streamR n 1 1) {-# INLINE rev1' #-} -- | r >= x >= l, interval = -d forR :: Monad m => Int -> Int -> Int -> (Int -> m ()) -> m () forR r l d = flip VFSM.mapM_ (streamR r l d) {-# INLINE forR #-} -- | for (int i = l; f(i, p) <= r ; g(i, d)) streamG :: Monad m => Int -> Int -> (Int -> Int -> Int) -> Int -> (Int -> Int -> Int) -> Int -> VFSM.Stream m Int streamG l r f p g d = VFSM.Stream step l where step x | f x p <= r = return $ VFSM.Yield x (g x d) | otherwise = return VFSM.Done {-# INLINE [0] step #-} {-# INLINE [1] streamG #-} forG :: Monad m => Int -> Int -> (Int -> Int -> Int) -> Int -> (Int -> Int -> Int) -> Int -> (Int -> m ()) -> m () forG l r f p g d = flip VFSM.mapM_ (streamG l r f p g d) {-# INLINE forG #-} withBreakIO :: ((r -> ContT r IO b) -> ContT r IO r) -> IO r withBreakIO = flip runContT pure . callCC {-# INLINE withBreakIO #-} withBreakST :: ((r -> ContT r (ST s) b) -> ContT r (ST s) r) -> (ST s) r withBreakST = flip runContT pure . callCC {-# INLINE withBreakST #-}