class Mint: MOD = 998244353 # Must be a prime CACHE_FACTORIALS = [1, 1] def __init__(self, v): if self.__isally(v): self.v = v.v else: self.v = v % self.MOD @property def inv(self): return Mint(self.__minv(self.v)) @classmethod def factorial(cls, v): for i in range(len(cls.CACHE_FACTORIALS), int(v) + 1): cls.CACHE_FACTORIALS.append(cls.CACHE_FACTORIALS[-1] * i % cls.MOD) return Mint(cls.CACHE_FACTORIALS[int(v)]) @classmethod def perm(cls, n, r): if n < r or r < 0: return 0 return cls.factorial(n) // cls.factorial(n - r) @classmethod def comb(cls, n, r): if n < r or r < 0: return 0 return cls.perm(n, r) // cls.factorial(r) @classmethod def __isally(cls, v) -> bool: return isinstance(v, cls) @classmethod def __minv(cls, v) -> int: return pow(v, cls.MOD - 2, cls.MOD) @classmethod def __mpow(cls, v, w) -> int: return pow(v, w, cls.MOD) def __str__(self): return str(self.v) __repr__ = __str__ def __int__(self): return self.v def __eq__(self, w): return self.v == w.v if self.__isally(w) else self.v == w def __add__(self, w): return Mint(self.v + w.v) if self.__isally(w) else Mint(self.v + w) __radd__ = __add__ def __sub__(self, w): return Mint(self.v - w.v) if self.__isally(w) else Mint(self.v - w) def __rsub__(self, u): return Mint(u.v - self.v) if self.__isally(u) else Mint(u - self.v) def __mul__(self, w): return Mint(self.v * w.v) if self.__isally(w) else Mint(self.v * w) __rmul__ = __mul__ def __floordiv__(self, w): return Mint(self.v * self.__minv(w.v)) if self.__isally(w) else Mint(self.v * self.__minv(w)) def __rfloordiv__(self, u): return Mint(u.v * self.__minv(self.v)) if self.__isally(u) else Mint(u * self.__minv(self.v)) def __pow__(self, w): return Mint(self.__mpow(self.v, w.v)) if self.__isally(w) else Mint(self.__mpow(self.v, w)) def __rpow__(self, u): return Mint(self.__mpow(u.v, self.v)) if self.__isally(u) else Mint(self.__mpow(u, self.v)) n, m = map(int,input().split()) if m <= n: print(1) exit() ans = 1 for i in range(1,m//n+1): rest = m-n*i ans += Mint.comb(i+rest,i) print(ans)