/** * author: otera **/ #include using namespace std; // #define int long long typedef long long ll; typedef long double ld; #define rep(i, n) for(int i = 0; i < n; ++ i) #define per(i,n) for(int i=n-1;i>=0;i--) typedef pair P; typedef pair LP; #define fr first #define sc second #define all(c) c.begin(),c.end() template inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; } template inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; } namespace atcoder { template struct mcf_graph { public: mcf_graph() {} mcf_graph(int n) : _n(n), g(n) {} int add_edge(int from, int to, Cap cap, Cost cost) { assert(0 <= from && from < _n); assert(0 <= to && to < _n); int m = int(pos.size()); pos.push_back({from, int(g[from].size())}); g[from].push_back(_edge{to, int(g[to].size()), cap, cost}); g[to].push_back(_edge{from, int(g[from].size()) - 1, 0, -cost}); return m; } struct edge { int from, to; Cap cap, flow; Cost cost; }; edge get_edge(int i) { int m = int(pos.size()); assert(0 <= i && i < m); auto _e = g[pos[i].first][pos[i].second]; auto _re = g[_e.to][_e.rev]; return edge{ pos[i].first, _e.to, _e.cap + _re.cap, _re.cap, _e.cost, }; } std::vector edges() { int m = int(pos.size()); std::vector result(m); for (int i = 0; i < m; i++) { result[i] = get_edge(i); } return result; } std::pair flow(int s, int t) { return flow(s, t, std::numeric_limits::max()); } std::pair flow(int s, int t, Cap flow_limit) { return slope(s, t, flow_limit).back(); } std::vector> slope(int s, int t) { return slope(s, t, std::numeric_limits::max()); } std::vector> slope(int s, int t, Cap flow_limit) { assert(0 <= s && s < _n); assert(0 <= t && t < _n); assert(s != t); // variants (C = maxcost): // -(n-1)C <= dual[s] <= dual[i] <= dual[t] = 0 // reduced cost (= e.cost + dual[e.from] - dual[e.to]) >= 0 for all edge std::vector dual(_n, 0), dist(_n); std::vector pv(_n), pe(_n); std::vector vis(_n); auto dual_ref = [&]() { std::fill(dist.begin(), dist.end(), std::numeric_limits::max()); std::fill(pv.begin(), pv.end(), -1); std::fill(pe.begin(), pe.end(), -1); std::fill(vis.begin(), vis.end(), false); struct Q { Cost key; int to; bool operator<(Q r) const { return key > r.key; } }; std::priority_queue que; dist[s] = 0; que.push(Q{0, s}); while (!que.empty()) { int v = que.top().to; que.pop(); if (vis[v]) continue; vis[v] = true; if (v == t) break; // dist[v] = shortest(s, v) + dual[s] - dual[v] // dist[v] >= 0 (all reduced cost are positive) // dist[v] <= (n-1)C for (int i = 0; i < int(g[v].size()); i++) { auto e = g[v][i]; if (vis[e.to] || !e.cap) continue; // |-dual[e.to] + dual[v]| <= (n-1)C // cost <= C - -(n-1)C + 0 = nC Cost cost = e.cost - dual[e.to] + dual[v]; if (dist[e.to] - dist[v] > cost) { dist[e.to] = dist[v] + cost; pv[e.to] = v; pe[e.to] = i; que.push(Q{dist[e.to], e.to}); } } } if (!vis[t]) { return false; } for (int v = 0; v < _n; v++) { if (!vis[v]) continue; // dual[v] = dual[v] - dist[t] + dist[v] // = dual[v] - (shortest(s, t) + dual[s] - dual[t]) + (shortest(s, v) + dual[s] - dual[v]) // = - shortest(s, t) + dual[t] + shortest(s, v) // = shortest(s, v) - shortest(s, t) >= 0 - (n-1)C dual[v] -= dist[t] - dist[v]; } return true; }; Cap flow = 0; Cost cost = 0, prev_cost = -1; std::vector> result; result.push_back({flow, cost}); while (flow < flow_limit) { if (!dual_ref()) break; Cap c = flow_limit - flow; for (int v = t; v != s; v = pv[v]) { c = std::min(c, g[pv[v]][pe[v]].cap); } for (int v = t; v != s; v = pv[v]) { auto& e = g[pv[v]][pe[v]]; e.cap -= c; g[v][e.rev].cap += c; } Cost d = -dual[s]; flow += c; cost += c * d; if (prev_cost == d) { result.pop_back(); } result.push_back({flow, cost}); prev_cost = cost; } return result; } private: int _n; struct _edge { int to, rev; Cap cap; Cost cost; }; std::vector> pos; std::vector> g; }; } // namespace atcoder using namespace atcoder; const ll INF = 1LL<<60; void solve() { int n; string s; cin >> n >> s; vector v(n); rep(i, n) { cin >> v[i]; } mcf_graph g(n + 2); int src = n, t = n + 1; const ll BIG = 1e10; // int y = -1, u = -1, k = -1, i = -1; // rep(j, n) { // if(s[j] == 'y') { // if(y == -1) { // g.add_edge(src, j, INF, 0); // } else { // g.add_edge(y, j, INF, 0); // } // y = j; // } else if(s[j] == 'u') { // if(y != -1 and y < j) { // g.add_edge(y, j, 1, BIG - v[y]); // } // if(u != -1) { // g.add_edge(u, j, INF, 0); // } // u = j; // } else if(s[j] == 'k') { // if(u != -1 and u < j) { // g.add_edge(u, j, 1, BIG - v[u]); // } // if(k != -1) { // g.add_edge(k, j, INF, 0); // } // k = j; // } else if(s[j] == 'i') { // if(k != -1 and k < j) { // g.add_edge(k, j, 1, BIG - v[k]); // } // if(i != -1) { // g.add_edge(i, j, INF, 0); // } // g.add_edge(j, t, 1, BIG - v[j]); // i = j; // } // } rep(i, n) { if(s[i] == 'y') { g.add_edge(src, i, INF, 0); for(int j = i + 1; j < n; ++ j) { if(s[j] == 'u') { g.add_edge(i, j, 1, BIG - v[i]); break; } } } else if(s[i] == 'u') { for(int j = i + 1; j < n; ++ j) { if(s[j] == 'u') { g.add_edge(i, j, INF, 0); break; } } for(int j = i + 1; j < n; ++ j) { if(s[j] == 'k') { g.add_edge(i, j, 1, BIG - v[i]); break; } } } else if(s[i] == 'k') { for(int j = i + 1; j < n; ++ j) { if(s[j] == 'k') { g.add_edge(i, j, INF, 0); break; } } for(int j = i + 1; j < n; ++ j) { if(s[j] == 'i') { g.add_edge(i, j, 1, BIG - v[i]); break; } } } else if(s[i] == 'i') { for(int j = i + 1; j < n; ++ j) { if(s[j] == 'i') { g.add_edge(i, j, INF, 0); break; } } g.add_edge(i, t, 1, BIG - v[i]); } } auto f = g.flow(src, t); // cerr << f.fr << "\n"; cout << BIG * 4LL * f.fr - f.sc << "\n"; } signed main() { ios::sync_with_stdio(false); cin.tie(0); //cout << fixed << setprecision(20); //int t; cin >> t; rep(i, t)solve(); solve(); return 0; }