{-# LANGUAGE BangPatterns #-} {-# LANGUAGE BinaryLiterals #-} {-# LANGUAGE CPP #-} {-# LANGUAGE DerivingVia #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE RankNTypes #-} {-# LANGUAGE TypeFamilies #-} import Control.Monad import Control.Monad.Cont import Control.Monad.ST import Data.IORef import qualified Data.Vector.Fusion.Stream.Monadic as VFSM import qualified Data.Vector.Unboxed.Mutable as VUM main :: IO () main = do n <- readLn :: IO Int prime <- VUM.unsafeNew 10010 :: IO (VUM.IOVector Bool) dp <- VUM.unsafeNew 10010 :: IO (VUM.IOVector Bool) p <- VUM.unsafeNew 100000 :: IO (VUM.IOVector Int) ptr <- newIORef (0 :: Int) range 2 n $ \i -> VUM.unsafeWrite prime i True forP n $ \i -> do pi <- VUM.unsafeRead prime i when pi $ forG 2 n (*) i (+) 1 $ \j -> do VUM.unsafeWrite prime (i * j) False range 2 n $ \i -> do pi <- VUM.unsafeRead prime i when pi $ do pointer <- readIORef ptr modifyIORef' ptr succ VUM.unsafeWrite p pointer i VUM.unsafeWrite dp 0 True VUM.unsafeWrite dp 1 True range 2 n $ \i -> do dpi <- VUM.unsafeRead dp i unless dpi $ do pSize <- succ <$> readIORef ptr withBreakIO $ \break -> rep pSize $ \j -> do pj <- VUM.unsafeRead p j when (i + pj > n) $ break () VUM.unsafeWrite dp (i + pj) True dpn <- VUM.unsafeRead dp n if dpn then print "Win" else print "Lose" rep :: Monad m => Int -> (Int -> m ()) -> m () rep n = flip VFSM.mapM_ (streamG 0 (n - 1) const 0 (+) 1) {-# INLINE rep #-} rep' :: Monad m => Int -> (Int -> m ()) -> m () rep' n = flip VFSM.mapM_ (streamG 0 n const 0 (+) 1) {-# INLINE rep' #-} rep1 :: Monad m => Int -> (Int -> m ()) -> m () rep1 n = flip VFSM.mapM_ (streamG 1 (n - 1) const 0 (+) 1) {-# INLINE rep1 #-} rep1' :: Monad m => Int -> (Int -> m ()) -> m () rep1' n = flip VFSM.mapM_ (streamG 1 n const 0 (+) 1) {-# INLINE rep1' #-} rev :: Monad m => Int -> (Int -> m ()) -> m () rev n = flip VFSM.mapM_ (streamRG (n - 1) 0 const 0 (-) 1) {-# INLINE rev #-} rev' :: Monad m => Int -> (Int -> m ()) -> m () rev' n = flip VFSM.mapM_ (streamRG n 0 const 0 (-) 1) {-# INLINE rev' #-} rev1 :: Monad m => Int -> (Int -> m ()) -> m () rev1 n = flip VFSM.mapM_ (streamRG (n - 1) 1 const 0 (-) 1) {-# INLINE rev1 #-} rev1' :: Monad m => Int -> (Int -> m ()) -> m () rev1' n = flip VFSM.mapM_ (streamRG n 1 const 0 (-) 1) {-# INLINE rev1' #-} range :: Monad m => Int -> Int -> (Int -> m ()) -> m () range l r = flip VFSM.mapM_ (streamG l r const 0 (+) 1) {-# INLINE range #-} rangeR :: Monad m => Int -> Int -> (Int -> m ()) -> m () rangeR r l = flip VFSM.mapM_ (streamRG r l const 0 (-) 1) {-# INLINE rangeR #-} forP :: Monad m => Int -> (Int -> m ()) -> m () forP p = flip VFSM.mapM_ (streamG 2 p (^) 2 (+) 1) {-# INLINE forP #-} forG :: Monad m => Int -> Int -> (Int -> Int -> Int) -> Int -> (Int -> Int -> Int) -> Int -> (Int -> m ()) -> m () forG l r f p g d = flip VFSM.mapM_ (streamG l r f p g d) {-# INLINE forG #-} forRG :: Monad m => Int -> Int -> (Int -> Int -> Int) -> Int -> (Int -> Int -> Int) -> Int -> (Int -> m ()) -> m () forRG r l f p g d = flip VFSM.mapM_ (streamRG r l f p g d) {-# INLINE forRG #-} streamG :: Monad m => Int -> Int -> (Int -> Int -> Int) -> Int -> (Int -> Int -> Int) -> Int -> VFSM.Stream m Int streamG !l !r !f !p !g !d = VFSM.Stream step l where step x | f x p <= r = return $ VFSM.Yield x (g x d) | otherwise = return VFSM.Done {-# INLINE [0] step #-} {-# INLINE [1] streamG #-} streamRG :: Monad m => Int -> Int -> (Int -> Int -> Int) -> Int -> (Int -> Int -> Int) -> Int -> VFSM.Stream m Int streamRG !r !l !f !p !g !d = VFSM.Stream step r where step x | f x p >= l = return $ VFSM.Yield x (g x d) | otherwise = return VFSM.Done {-# INLINE [0] step #-} {-# INLINE [1] streamRG #-} withBreakIO :: ((r -> ContT r IO b) -> ContT r IO r) -> IO r withBreakIO = flip runContT pure . callCC {-# INLINE withBreakIO #-} withBreakST :: ((r -> ContT r (ST s) b) -> ContT r (ST s) r) -> (ST s) r withBreakST = flip runContT pure . callCC {-# INLINE withBreakST #-}