#line 1 "main.cpp" /** * @title Template */ #include #include #include #include #include #include #include #line 2 "/Users/kodamankod/Desktop/cpp_programming/Library/other/range.cpp" #line 4 "/Users/kodamankod/Desktop/cpp_programming/Library/other/range.cpp" class range { struct iter { std::size_t itr; constexpr iter(std::size_t pos) noexcept: itr(pos) { } constexpr void operator ++ () noexcept { ++itr; } constexpr bool operator != (iter other) const noexcept { return itr != other.itr; } constexpr std::size_t operator * () const noexcept { return itr; } }; struct reviter { std::size_t itr; constexpr reviter(std::size_t pos) noexcept: itr(pos) { } constexpr void operator ++ () noexcept { --itr; } constexpr bool operator != (reviter other) const noexcept { return itr != other.itr; } constexpr std::size_t operator * () const noexcept { return itr; } }; const iter first, last; public: constexpr range(std::size_t first, std::size_t last) noexcept: first(first), last(std::max(first, last)) { } constexpr iter begin() const noexcept { return first; } constexpr iter end() const noexcept { return last; } constexpr reviter rbegin() const noexcept { return reviter(*last - 1); } constexpr reviter rend() const noexcept { return reviter(*first - 1); } }; /** * @title Range */ #line 2 "/Users/kodamankod/Desktop/cpp_programming/Library/algebraic/modular.cpp" #line 2 "/Users/kodamankod/Desktop/cpp_programming/Library/algebraic/mod_inv.cpp" #line 4 "/Users/kodamankod/Desktop/cpp_programming/Library/algebraic/mod_inv.cpp" #include constexpr std::pair mod_inv(int64_t a, int64_t b) { if ((a %= b) == 0) return { b, 0 }; int64_t s = b, t = (a < 0 ? a + b : a); int64_t m0 = 0, m1 = 1, tmp = 0; while (t > 0) { const auto u = s / t; s -= t * u; m0 -= m1 * u; tmp = s; s = t; t = tmp; tmp = m0; m0 = m1; m1 = tmp; } return { s, (m0 < 0 ? m0 + b / s : m0) }; } /** * @title Extended GCD */ #line 4 "/Users/kodamankod/Desktop/cpp_programming/Library/algebraic/modular.cpp" #line 8 "/Users/kodamankod/Desktop/cpp_programming/Library/algebraic/modular.cpp" #include template class modular { public: using value_type = uint32_t; using cover_type = uint64_t; static constexpr uint32_t mod() { return Modulus::mod(); } template static constexpr value_type normalize(T value_) noexcept { if (value_ < 0) { value_ = -value_; value_ %= mod(); if (value_ == 0) return 0; return mod() - value_; } return value_ % mod(); } private: value_type value; template * = nullptr> constexpr modular inverse_helper() const noexcept { return power(*this, mod() - 2); } template * = nullptr> constexpr modular inverse_helper() const noexcept { const auto tmp = mod_inv(value, mod()); assert(tmp.first == 1); return modular(tmp.second); } public: constexpr modular() noexcept : value(0) { } template explicit constexpr modular(T value_) noexcept : value(normalize(value_)) { } template explicit constexpr operator T() const noexcept { return static_cast(value); } constexpr value_type get() const noexcept { return value; } constexpr value_type &extract() noexcept { return value; } constexpr modular operator - () const noexcept { return modular(mod() - value); } constexpr modular operator ~ () const noexcept { return inverse(*this); } constexpr modular operator + (const modular &rhs) const noexcept { return modular(*this) += rhs; } constexpr modular& operator += (const modular &rhs) noexcept { if ((value += rhs.value) >= mod()) value -= mod(); return *this; } constexpr modular operator - (const modular &rhs) const noexcept { return modular(*this) -= rhs; } constexpr modular& operator -= (const modular &rhs) noexcept { if ((value += mod() - rhs.value) >= mod()) value -= mod(); return *this; } constexpr modular operator * (const modular &rhs) const noexcept { return modular(*this) *= rhs; } constexpr modular& operator *= (const modular &rhs) noexcept { value = (cover_type) value * rhs.value % mod(); return *this; } constexpr modular operator / (const modular &rhs) const noexcept { return modular(*this) /= rhs; } constexpr modular& operator /= (const modular &rhs) noexcept { return (*this) *= inverse(rhs); } constexpr bool zero() const noexcept { return value == 0; } constexpr bool operator == (const modular &rhs) const noexcept { return value == rhs.value; } constexpr bool operator != (const modular &rhs) const noexcept { return value != rhs.value; } friend std::ostream& operator << (std::ostream &stream, const modular &rhs) { return stream << rhs.value; } friend constexpr modular inverse(const modular &val) noexcept { return val.inverse_helper(); } friend constexpr modular power(modular val, cover_type exp) noexcept { modular res(1); for (; exp > 0; exp >>= 1, val *= val) if (exp & 1) res *= val; return res; } }; template struct static_modulus { static constexpr uint32_t mod() noexcept { return Mod; } static constexpr bool is_prime = IsPrime; }; template struct dynamic_modulus { static uint32_t &mod() noexcept { static uint32_t val = 0; return val; } static constexpr bool is_prime = IsPrime; }; template using mint32_t = modular>; using rmint32_t = modular>; /* * @title Modint */ #line 2 "/Users/kodamankod/Desktop/cpp_programming/Library/container/fenwick_tree.cpp" #line 2 "/Users/kodamankod/Desktop/cpp_programming/Library/other/bit_operation.cpp" #include #line 5 "/Users/kodamankod/Desktop/cpp_programming/Library/other/bit_operation.cpp" constexpr size_t bit_ppc(const uint64_t x) { return __builtin_popcountll(x); } constexpr size_t bit_ctzr(const uint64_t x) { return x == 0 ? 64 : __builtin_ctzll(x); } constexpr size_t bit_ctzl(const uint64_t x) { return x == 0 ? 64 : __builtin_clzll(x); } constexpr size_t bit_width(const uint64_t x) { return 64 - bit_ctzl(x); } constexpr uint64_t bit_msb(const uint64_t x) { return x == 0 ? 0 : uint64_t(1) << (bit_width(x) - 1); } constexpr uint64_t bit_lsb(const uint64_t x) { return x & (-x); } constexpr uint64_t bit_cover(const uint64_t x) { return x == 0 ? 0 : bit_msb(2 * x - 1); } constexpr uint64_t bit_rev(uint64_t x) { x = ((x >> 1) & 0x5555555555555555) | ((x & 0x5555555555555555) << 1); x = ((x >> 2) & 0x3333333333333333) | ((x & 0x3333333333333333) << 2); x = ((x >> 4) & 0x0F0F0F0F0F0F0F0F) | ((x & 0x0F0F0F0F0F0F0F0F) << 4); x = ((x >> 8) & 0x00FF00FF00FF00FF) | ((x & 0x00FF00FF00FF00FF) << 8); x = ((x >> 16) & 0x0000FFFF0000FFFF) | ((x & 0x0000FFFF0000FFFF) << 16); x = (x >> 32) | (x << 32); return x; } /** * @title Bit Operations */ #line 4 "/Users/kodamankod/Desktop/cpp_programming/Library/container/fenwick_tree.cpp" #line 8 "/Users/kodamankod/Desktop/cpp_programming/Library/container/fenwick_tree.cpp" #include template class fenwick_tree { public: using value_type = T; using size_type = size_t; private: std::vector M_tree; public: fenwick_tree() = default; explicit fenwick_tree(size_type size) { initialize(size); } void initialize(size_type size) { M_tree.assign(size + 1, value_type { }); } void add(size_type index, const value_type& x) { assert(index < size()); ++index; while (index <= size()) { M_tree[index] += x; index += bit_lsb(index); } } template value_type get(size_type index) const { assert(index < size()); index += Indexed; value_type res{ }; while (index > 0) { res += M_tree[index]; index -= bit_lsb(index); } return res; } value_type fold(size_type first, size_type last) const { assert(first <= last); assert(last <= size()); value_type res{}; while (first < last) { res += M_tree[last]; last -= bit_lsb(last); } while (last < first) { res -= M_tree[first]; first -= bit_lsb(first); } return res; } template size_type satisfies(const size_type left, Func &&func) const { assert(left <= size()); if (func(value_type { })) return left; value_type val = -get<0>(left); size_type res = 0; for (size_type cur = bit_cover(size() + 1) >> 1; cur > 0; cur >>= 1) { if ((res + cur <= left) || (res + cur <= size() && !func(val + M_tree[res + cur]))) { val += M_tree[res + cur]; res += cur; } } return res + 1; } void clear() { M_tree.clear(); M_tree.shrink_to_fit(); } size_type size() const { return M_tree.size() - 1; } }; /** * @title Fenwick Tree */ #line 17 "main.cpp" using i32 = std::int32_t; using i64 = std::int64_t; using u32 = std::uint32_t; using u64 = std::uint64_t; using isize = std::ptrdiff_t; using usize = std::size_t; constexpr i32 inf32 = (i32(1) << 30) - 1; constexpr i64 inf64 = (i64(1) << 62) - 1; using Fp = mint32_t<998244353>; int main() { usize N; std::cin >> N; std::vector A(N); for (auto &x: A) { std::cin >> x; } auto cmp = A; std::sort(cmp.begin(), cmp.end()); cmp.erase(std::unique(cmp.begin(), cmp.end()), cmp.end()); std::vector idx(N); for (auto i: range(0, N)) { idx[i] = std::lower_bound(cmp.begin(), cmp.end(), A[i]) - cmp.begin(); } fenwick_tree lcnt(cmp.size()), rcnt(cmp.size()); fenwick_tree lsum(cmp.size()), rsum(cmp.size()); for (auto i: range(0, N)) { rcnt.add(idx[i], Fp(1)); rsum.add(idx[i], Fp(A[i])); } Fp ans; for (auto i: range(0, N)) { rcnt.add(idx[i], -Fp(1)); rsum.add(idx[i], -Fp(A[i])); const auto L = lcnt.fold(idx[i] + 1, cmp.size()); const auto R = rcnt.fold(0, idx[i]); ans += L * rsum.fold(0, idx[i]) + R * lsum.fold(idx[i] + 1, cmp.size()) + L * R * Fp(A[i]); lcnt.add(idx[i], Fp(1)); lsum.add(idx[i], Fp(A[i])); } std::cout << ans << '\n'; return 0; }