#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define endl codeforces #define ALL(v) std::begin(v), std::end(v) #define ALLR(v) std::rbegin(v), std::rend(v) using ll = std::int64_t; using ull = std::uint64_t; using pii = std::pair; using tii = std::tuple; using pll = std::pair; using tll = std::tuple; using size_type = ssize_t; template using vec = std::vector; template using vvec = vec>; template const T& var_min(const T &t) { return t; } template const T& var_max(const T &t) { return t; } template const T& var_min(const T &t, const Tail&... tail) { return std::min(t, var_min(tail...)); } template const T& var_max(const T &t, const Tail&... tail) { return std::max(t, var_max(tail...)); } template void chmin(T &t, const Tail&... tail) { t = var_min(t, tail...); } template void chmax(T &t, const Tail&... tail) { t = var_max(t, tail...); } template struct multi_dim_array { using type = std::array::type, Head>; }; template struct multi_dim_array { using type = std::array; }; template using mdarray = typename multi_dim_array::type; template void fill_seq(T &t, F f, Args... args) { if constexpr (std::is_invocable::value) { t = f(args...); } else { for (size_type i = 0; i < t.size(); i++) fill_seq(t[i], f, args..., i); } } template vec make_v(size_type sz) { return vec(sz); } template auto make_v(size_type hs, Tail&&... ts) { auto v = std::move(make_v(std::forward(ts)...)); return vec(hs, v); } namespace init__ { struct InitIO { InitIO() { std::cin.tie(nullptr); std::ios_base::sync_with_stdio(false); std::cout << std::fixed << std::setprecision(30); } } init_io; } template T ceil_pow2(T bound) { T ret = 1; while (ret < bound) ret *= 2; return ret; } template T ceil_div(T a, T b) { return a / b + !!(a % b); } namespace math { template constexpr T mul_id_ele() { if constexpr (std::is_fundamental::value) { return T(1); } else { return T::mul_id_ele(); } } template constexpr T add_id_ele() { if constexpr (std::is_fundamental::value) { return T(0); } else { return T::add_id_ele(); } } template constexpr T pow(const T &n, ll k) { T ret = mul_id_ele(); T cur = n; while (k) { if (k & 1) ret *= cur; cur *= cur; k /= 2; } return ret; } template typename std::enable_if::value, T>::type gcd(T a, T b) { return b ? gcd(a % b, b) : a; } } namespace math { template struct Modint { constexpr Modint(ll x) noexcept : x((Mod + x % static_cast(Mod)) % Mod) { } constexpr Modint() noexcept : Modint(0) { } constexpr static Modint add_id_ele() { return Modint(0); } constexpr static Modint mul_id_ele() { return Modint(1); } constexpr ll value() const noexcept { return static_cast(x); } constexpr Modint& operator+=(const Modint &oth) noexcept { x += oth.value(); if (Mod <= x) x -= Mod; return *this; } constexpr Modint& operator-=(const Modint &oth) noexcept { x += Mod - oth.value(); if (Mod <= x) x -= Mod; return *this; } constexpr Modint& operator*=(const Modint &oth) noexcept { x *= oth.value(); x %= Mod; return *this; } constexpr Modint& operator/=(const Modint &oth) noexcept { x *= oth.inv().value(); x %= Mod; return *this; } constexpr Modint operator+(const Modint &oth) const noexcept { return Modint(x) += oth; } constexpr Modint operator-(const Modint &oth) const noexcept { return Modint(x) -= oth; } constexpr Modint operator*(const Modint &oth) const noexcept { return Modint(x) *= oth; } constexpr Modint operator/(const Modint &oth) const noexcept { return Modint(x) /= oth; } constexpr Modint operator-() const noexcept { return Modint((x != 0) * (Mod - x)); } constexpr bool operator==(const Modint &oth) const noexcept { return value() == oth.value(); } template constexpr typename std::enable_if::value, const Modint&>::type operator=(T t) noexcept { (*this) = Modint(std::forward(t)); return *this; } constexpr Modint inv() const noexcept { return ::math::pow(*this, Mod - 2); } constexpr ull mod() const noexcept { return Mod; } private: ull x; }; template Modint inv(Modint m) { return m.inv(); } template std::istream& operator>>(std::istream &is, Modint &m) { ll v; is >> v; m = v; return is; } template std::ostream& operator<<(std::ostream &os, Modint m) { os << m.value(); return os; } } namespace tree { template class BIT { vec data; public: const T id_ele; BIT() : id_ele() { } BIT(size_type sz, T id_ele) : id_ele(id_ele) { data = vec(ceil_pow2(sz) + 1, id_ele); } /* template BIT(F f, size_type sz, T id_ele) : id_ele(id_ele) { data = vec(ceil_pow2(sz) + 1, id_ele); for (size_type i = 0; i < sz; i++) { data[i + 1] = f(i); size_type par = i + (i & -i); if (par < size_type(data.size())) data[par] += data[i + 1]; } } BIT(vec d, T id_ele) : data(d), id_ele(id_ele) { size_type sz = data.size(); data.resize(ceil_pow2(sz)); } */ // [0, pos) T sum(size_type pos) const noexcept { T ret = id_ele; for (; 0 < pos; pos -= pos & -pos) ret += data[pos]; return ret; } // [l, r) T sum(size_type l, size_type r) const noexcept { return sum(r) - sum(l); } void add(ll pos, T delta) noexcept { for (++pos; pos < size_type(data.size()); pos += pos & -pos) data[pos] += delta; } // sum(ret) < bound <= sum(ret+1) size_type lower_bound(T bound) const noexcept { if (data.back() < bound) return data.size(); T sum = id_ele; size_type ret = 0; for (size_type i = size_type(data.size() - 1) / 2; 0 < i; i /= 2) { if (sum + data[ret + i] < bound) { ret += i; sum += data[ret]; } } return ret; } const vec& raw() const { return data; } }; } constexpr ll mod = 998'244'353; using mint = math::Modint; int main() { ll n; std::cin >> n; vec av(n); for (auto &e : av) std::cin >> e; vec ord(n); std::iota(ALL(ord), 0); std::sort(ALL(ord), [&](ll i, ll j) { return av[i] < av[j]; }); auto sz = n + 10; tree::BIT bt1(sz, mint(0)); tree::BIT used(sz, 0); vec sum1(n), cnt(n); for (ll i : ord) { sum1[i] = bt1.sum(i, sz); bt1.add(i, av[i]); cnt[i] = used.sum(i, sz); used.add(i, 1); } tree::BIT bt2(sz, mint(0)); tree::BIT cnt_bt(sz, mint(0)); mint ans = 0; for (ll i : ord) { mint c = cnt_bt.sum(i, sz); mint s = bt2.sum(i, sz); mint addv = (c * av[i]) + s; ans += addv; cnt_bt.add(i, cnt[i]); bt2.add(i, sum1[i] + (cnt[i] * av[i])); } std::cout << ans << "\n"; return 0; }