lib C;fun strtoll(s: UInt8*,p: UInt8**,b: Int32): Int64;end class String;def to_i64;C.strtoll(self,nil,10);end;end # ac-library.cr by hakatashi https://github.com/google/ac-library.cr # # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. module AtCoder macro static_modint(name, modulo) module AtCoder record {{name}}, value : Int64 do @@factorials = Array(self).new(100_000_i64) # Change here to improve performance MOD = {{modulo}} def self.factorial(n) if @@factorials.empty? @@factorials << self.new(1_i64) end @@factorials.size.upto(n) do |i| @@factorials << @@factorials.last * i end @@factorials[n] end def self.permutation(n, k) raise ArgumentError.new("k cannot be greater than n") unless n >= k factorial(n) // factorial(n - k) end def self.combination(n, k) raise ArgumentError.new("k cannot be greater than n") unless n >= k permutation(n, k) // @@factorials[k] end def self.repeated_combination(n, k) combination(n + k - 1, k) end def self.extended_gcd(a, b) last_remainder, remainder = a.abs, b.abs x, last_x, y, last_y = 0_i64, 1_i64, 1_i64, 0_i64 while remainder != 0 new_last_remainder = remainder quotient, remainder = last_remainder.divmod(remainder) last_remainder = new_last_remainder x, last_x = last_x - quotient * x, x y, last_y = last_y - quotient * y, y end return last_remainder, last_x * (a < 0 ? -1 : 1) end def self.zero self.new(0_i64) end def inv g, x = self.class.extended_gcd(@value, MOD) self.class.new(x % MOD) end def +(value) self.class.new((@value + value.to_i64 % MOD) % MOD) end def -(value) self.class.new((@value + MOD - value.to_i64 % MOD) % MOD) end def *(value) self.class.new((@value * value.to_i64 % MOD) % MOD) end def /(value : self) raise DivisionByZeroError.new if value == 0 self * value.inv end def /(value) raise DivisionByZeroError.new if value == 0 self * self.class.new(value.to_i64 % MOD).inv end def //(value) self./(value) end def **(value) b = value > 0 ? self : self.inv e = value.abs ret = self.class.new(1_i64) while e > 0 if e % 2 == 1 ret *= b end b *= b e //= 2 end ret end def <<(value) self * self.class.new(2_i64) ** value end def sqrt z = self.class.new(1_i64) until z ** ((MOD - 1) // 2) == MOD - 1 z += 1 end q = MOD - 1 m = 0 while q % 2 == 0 q //= 2 m += 1 end c = z ** q t = self ** q r = self ** ((q + 1) // 2) m.downto(2) do |i| tmp = t ** (2 ** (i - 2)) if tmp != 1 r *= c t *= c ** 2 end c *= c end if r * r == self r.to_i64 * 2 <= MOD ? r : -r else nil end end def to_i64 @value end def ==(value : self) @value == value.to_i64 end def ==(value) @value == value end def - self.class.new(0_i64) - self end def + self end def abs self end # ac-library compatibility def pow(value) self.**(value) end def val self.to_i64 end # ModInt shouldn't be compared def <(value) raise NotImplementedError.new("<") end def <=(value) raise NotImplementedError.new("<=") end def <(value) raise NotImplementedError.new("<") end def >=(value) raise NotImplementedError.new(">=") end delegate to_s, to: @value delegate inspect, to: @value end end struct Int def +(value : AtCoder::{{name}}) value + self end def -(value : AtCoder::{{name}}) -value + self end def *(value : AtCoder::{{name}}) value * self end def //(value : AtCoder::{{name}}) value.inv * self end def /(value : AtCoder::{{name}}) self // value end def ==(value : AtCoder::{{name}}) value == self end end end end AtCoder.static_modint(ModInt1000000007, 1_000_000_007_i64) AtCoder.static_modint(ModInt998244353, 998_244_353_i64) alias Mint = AtCoder::ModInt998244353 n, k = read_line.split.map(&.to_i64) ais = read_line.split.map {|a| Mint.new(a.to_i64)} p Mint.new(2_i64) ** k * ais.sum