# V: 頂点数 # g[v] = {(w, cost)}: # 頂点vから遷移可能な頂点(w)とそのコスト(cost) # r: 始点の頂点 from heapq import heappush, heappop INF = 10**18 def dijkstra(N, G, s): dist = [INF] * N que = [(0, s)] dist[s] = 0 while que: c, v = heappop(que) if dist[v] < c: continue for t, cost in G[v]: if dist[v] + cost < dist[t]: dist[t] = dist[v] + cost heappush(que, (dist[t], t)) return dist N, M = map(int, input().split()) G = [set() for _ in range(N)] vs = list() X = [] for _ in range(M): a, b, c, d = map(int, input().split()) a-=1;b-=1 # if a==0: # R = min(c+d, R) # vs.append((b, c, d)) G[a].add((b, c)) G[b].add((a, c)) X.append((a, b, c, d)) dd = dijkstra(N, G, 0) ans = dd[N-1] c = N-1 k = 0 R = [N-1] while 1: mn = 10**18 rr = -1 for u, co in G[c]: if dd[u]+co < mn: mn = co+dd[u] rr = u R.append(rr) c = rr if rr == 0: break G2 = [set() for _ in range(N)] vs = set() for u, v in zip(R, R[1:]): vs.add((u, v)) vs.add((v, u)) for a, b, c, d in X: if (a, b) in vs: G2[a].add((b, d)) G2[b].add((a, d)) else: G2[a].add((b, c)) G2[b].add((a, c)) dd = dijkstra(N, G2, N-1) ans += dd[0] print(ans)