/* このコード、と~おれ! Be accepted! ∧_∧  (。・ω・。)つ━☆・*。 ⊂   ノ    ・゜+.  しーJ   °。+ *´¨)          .· ´¸.·*´¨) ¸.·*¨)           (¸.·´ (¸.·'* ☆ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include ////多倍長整数, cpp_intで宣言 //#include //#include //using namespace boost::multiprecision; // //#pragma GCC target ("avx2") //#pragma GCC target("arch=skylake-avx512") //#pragma GCC optimize ("O3") //#pragma GCC target ("sse4") //#pragma GCC optimize ("unroll-loops") //#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native") #define repeat(i, n, m) for(int i = n; i < (m); ++i) #define rep(i, n) for(int i = 0; i < (n); ++i) #define printynl(a) printf(a ? "yes\n" : "no\n") #define printyn(a) printf(a ? "Yes\n" : "No\n") #define printYN(a) printf(a ? "YES\n" : "NO\n") #define printim(a) printf(a ? "possible\n" : "imposible\n") #define printdb(a) printf("%.50lf\n", a) //少数出力 #define printLdb(a) printf("%.50Lf\n", a) //少数出力 #define printdbd(a) printf("%.16lf\n", a) //少数出力(桁少なめ) #define prints(s) printf("%s\n", s.c_str()) //string出力 #define all(x) (x).begin(), (x).end() #define deg_to_rad(deg) (((deg)/360.0L)*2.0L*PI) #define rad_to_deg(rad) (((rad)/2.0L/PI)*360.0L) #define Please return #define AC 0 #define manhattan_dist(a, b, c, d) (abs(a - c) + abs(b - d)) /*(a, b) から (c, d) のマンハッタン距離 */ #define inf numeric_limits::infinity(); #define linf numeric_limits::infinity() using ll = long long; using ull = unsigned long long; constexpr int INF = 1073741823; constexpr int MINF = -1073741823; constexpr ll LINF = ll(4661686018427387903); constexpr ll MOD = 1e9 + 7; constexpr ll mod = 998244353; constexpr long double eps = 1e-6; const long double PI = acosl(-1.0L); using namespace std; void scans(string & str) { char c; str = ""; scanf("%c", &c); if (c == '\n')scanf("%c", &c); while (c != '\n' && c != -1 && c != ' ') { str += c; scanf("%c", &c); } } void scanc(char& str) { char c; scanf("%c", &c); if (c == -1)return; while (c == '\n') { scanf("%c", &c); } str = c; } double acot(double x) { return PI / 2 - atan(x); } ll LSB(ll n) { return (n & (-n)); } template inline T chmin(T & a, const T & b) { if (a > b)a = b; return a; } template inline T chmax(T & a, const T & b) { if (a < b)a = b; return a; } //atcoder library //#include //using namespace atcoder; //random_device seed_gen; //mt19937 engine(seed_gen()); //uniform_distribution dist(-1.0, 1.0); /*-----------------------------------------ここからコード-----------------------------------------*/ /* * @title template(graph) * @docs kyopro/docs/graph_template.md */ template struct edge { T cost; int from, to; edge(int from, int to) : from(from), to(to), cost(T(1)) {} edge(int from, int to, T cost) : from(from), to(to), cost(cost) {} }; template struct graph { int n; bool directed, weighted; vector>> g; graph(int n, bool directed, bool weighted) : g(n), n(n), directed(directed), weighted(weighted) {} void add_edge(int from, int to, T cost = T(1)) { g[from].emplace_back(from, to, cost); if (not directed) { g[to].emplace_back(to, from, cost); } } vector>& operator[](const int& idx) { return g[idx]; } void read(int e, bool one_indexed) { int a, b, c = 1; while (e--) { scanf("%d%d", &a, &b); if (weighted) { scanf("%d", &c); } if (one_indexed)--a, --b; add_edge(a, b, c); } } void read(int e, bool one_indexed, const string& format) { int a, b; T c = T(1); while (e--) { scanf("%d%d", &a, &b); if (weighted) { scanf(format.c_str(), &c); } if (one_indexed)--a, --b; add_edge(a, b, c); } } }; /* * @title dijkstra(経路復元) * @docs kyopro/docs/dijkstra_path.md */ template vector dijkstra(graph& gh, vector& path, const int& v, const int& g, const int& n, const T Inf, const bool f) { priority_queue, vector>, greater>> priq; vector res(n); vector prev(n); fill(all(prev), -1); fill(all(res), Inf); priq.push({ 0, v }); res[v] = 0; int top; while (!priq.empty()) { auto now = priq.top(); top = now.second; priq.pop(); if (res[top] < now.first)continue; for (const auto& aa : gh[top]) { if (res[top] + aa.cost > res[aa.to])continue; else if (res[top] + aa.cost == res[aa.to]) { if (f) prev[aa.to] = min(top, prev[aa.to]); continue; } res[aa.to] = aa.cost + res[top]; prev[aa.to] = top; priq.push({ res[aa.to], aa.to }); } } for (int i = g; i != -1; i = prev[i])path.push_back(i); reverse(all(path)); return res; } int main() { int n, m; scanf("%d%d", &n, &m); graph> g(n * 2, false, true); graph g1(n, false, true), g2(n, true, true); rep(i, m) { int a, b, c, d; scanf("%d%d%d%d", &a, &b, &c, &d); g.add_edge(a - 1, b - 1, { c, d }); g.add_edge(a - 1 + n, b - 1 + n, { c, d }); g1.add_edge(a - 1, b - 1, c); } vector path; auto ans1 = dijkstra(g1, path, 0, n - 1, n, LINF, false); set> st; rep(i, path.size() - 1)st.insert({ min(path[i], path[i + 1]), max(path[i], path[i + 1]) }); rep(i, n) { for (const auto& aa : g[i]) { if (st.find({ min(aa.from, aa.to), max(aa.from, aa.to) }) != st.end())g2.add_edge(aa.from, aa.to, aa.cost.second); else g2.add_edge(aa.from, aa.to, aa.cost.first); } } ll ans = ans1[n - 1]; ans1 = dijkstra(g2, path, n - 1, 0, n, LINF, false); ans += ans1[0]; printf("%lld\n", ans); Please AC; }