import heapq import sys input = sys.stdin.buffer.readline def dijkstra(start: int, graph: list) -> list: """dijkstra法: 始点startから各頂点への最短距離を求める 計算量: O((E+V)logV) """ INF = 10 ** 18 n = len(graph) dist = [INF] * n dist2 = [INF] * n dist[start] = 0 dist2[start] = 0 q = [(0, start)] # q = [(startからの距離, 現在地)] while q: d, v = heapq.heappop(q) if dist[v] < d: continue for nxt_v, cost, cost2 in graph[v]: if dist[v] + cost < dist[nxt_v]: dist[nxt_v] = dist[v] + cost heapq.heappush(q, (dist[nxt_v], nxt_v)) elif dist[v] + cost < dist2[nxt_v] and dist[v] + cost >= dist[nxt_v]: dist2[nxt_v] = dist[v] + cost heapq.heappush(q, (dist2[nxt_v], nxt_v)) if dist2[v] + cost2 < dist2[nxt_v] and dist[v] + cost2 >= dist[nxt_v]: dist2[nxt_v] = dist2[v] + cost2 heapq.heappush(q, (dist2[nxt_v], nxt_v)) return dist, dist2 n, m = map(int, input().split()) edges = [list(map(int, input().split())) for _ in range(m)] ans = 0 graph = [[] for i in range(n)] for u, v, cost, d in edges: u -= 1 v -= 1 graph[u].append((v, cost, d)) graph[v].append((u, cost, d)) start = 0 dist, dist2 = dijkstra(start, graph) print(dist[-1] + dist2[-1])