#ifdef LOCAL #define _GLIBCXX_DEBUG #define __clock__ #else #pragma GCC optimize("Ofast") #endif #include using namespace std; using ll = long long; using ld = long double; using VI = vector; using VV = vector; using VS = vector; using PII = pair; // tourist set template string to_string(pair p); template string to_string(tuple p); template string to_string(tuple p); string to_string(const string& s) { return '"' + s + '"'; } string to_string(const char* s) { return to_string((string) s); } string to_string(bool b) { return (b ? "true" : "false"); } string to_string(vector v) { bool first = true; string res = "{"; for (int i = 0; i < static_cast(v.size()); i++) { if (!first) { res += ", "; } first = false; res += to_string(v[i]); } res += "}"; return res; } template string to_string(bitset v) { string res = ""; for (size_t i = 0; i < N; i++) { res += static_cast('0' + v[i]); } return res; } template string to_string(A v) { bool first = true; string res = "{"; for (const auto &x : v) { if (!first) { res += ", "; } first = false; res += to_string(x); } res += "}"; return res; } template string to_string(pair p) { return "(" + to_string(p.first) + ", " + to_string(p.second) + ")"; } template string to_string(tuple p) { return "(" + to_string(get<0>(p)) + ", " + to_string(get<1>(p)) + ", " + to_string(get<2>(p)) + ")"; } template string to_string(tuple p) { return "(" + to_string(get<0>(p)) + ", " + to_string(get<1>(p)) + ", " + to_string(get<2>(p)) + ", " + to_string(get<3>(p)) + ")"; } void debug_out() { cerr << '\n'; } template void debug_out(Head H, Tail... T) { cerr << " " << to_string(H); debug_out(T...); } #ifdef LOCAL #define debug(...) cerr << "[" << #__VA_ARGS__ << "]:", debug_out(__VA_ARGS__) #else #define debug(...) 42 #endif // tourist set end templatebool chmax(T &a, const T &b) { if (abool chmin(T &a, const T &b) { if (b()) #define MP make_pair #define p_yes() p("Yes") #define p_no() p("No") #define possible() p("Possible") #define impossible() p("Impossible") ll SUM(VI& V){ return accumulate(ALL(V), 0LL); } ll MIN(VI& V){return *min_element(ALL(V));} ll MAX(VI& V){return *max_element(ALL(V));} void print_vector(VI& V){ ll n = V.size(); rep(i, n){ if(i) cout << ' '; cout << V[i]; } cout << endl; } ll gcd(ll a,ll b){ if(b == 0) return a; return gcd(b,a%b); } ll lcm(ll a,ll b){ ll g = gcd(a,b); return a / g * b; } // long double using ld = long double; #define EPS (1e-14) #define equals(a,b) (fabs((a)-(b)) < EPS) // 小さい順に取り出すpriority queue using inverse_priority_queue = priority_queue, greater >; int popcount(ll t){ return __builtin_popcountll(t); } void no(){p_no(); exit(0);} void yes(){p_yes(); exit(0);} const ll mod = 1e9 + 7; // const ll mod = 998244353; const ll inf = 1e18; const double PI = acos(-1); // [a/b] (繰り上げ) ll ceil_div(ll a, ll b){ return (a+b-1)/b; } ll string_to_ll(string s){ return atoll(s.c_str()); } // snuke's mint // auto mod int // https://youtu.be/L8grWxBlIZ4?t=9858 // https://youtu.be/ERZuLAxZffQ?t=4807 : optimize // https://youtu.be/8uowVvQ_-Mo?t=1329 : division // const int mod = 1000000007; struct mint { ll x; // typedef long long ll; mint(ll x=0):x((x%mod+mod)%mod){} mint operator-() const { return mint(-x);} mint& operator+=(const mint a) { if ((x += a.x) >= mod) x -= mod; return *this; } mint& operator-=(const mint a) { if ((x += mod-a.x) >= mod) x -= mod; return *this; } mint& operator*=(const mint a) { (x *= a.x) %= mod; return *this; } mint operator+(const mint a) const { mint res(*this); return res+=a; } mint operator-(const mint a) const { mint res(*this); return res-=a; } mint operator*(const mint a) const { mint res(*this); return res*=a; } mint pow(ll t) const { if (!t) return 1; mint a = pow(t>>1); a *= a; if (t&1) a *= *this; return a; } // for prime mod mint inv() const { return pow(mod-2); } mint& operator/=(const mint a) { return (*this) *= a.inv(); } mint operator/(const mint a) const { mint res(*this); return res/=a; } }; #include #include #include #include #include namespace atcoder { template struct mcf_graph { public: mcf_graph() {} mcf_graph(int n) : _n(n), g(n) {} int add_edge(int from, int to, Cap cap, Cost cost) { assert(0 <= from && from < _n); assert(0 <= to && to < _n); int m = int(pos.size()); pos.push_back({from, int(g[from].size())}); int from_id = int(g[from].size()); int to_id = int(g[to].size()); if (from == to) to_id++; g[from].push_back(_edge{to, to_id, cap, cost}); g[to].push_back(_edge{from, from_id, 0, -cost}); return m; } struct edge { int from, to; Cap cap, flow; Cost cost; }; edge get_edge(int i) { int m = int(pos.size()); assert(0 <= i && i < m); auto _e = g[pos[i].first][pos[i].second]; auto _re = g[_e.to][_e.rev]; return edge{ pos[i].first, _e.to, _e.cap + _re.cap, _re.cap, _e.cost, }; } std::vector edges() { int m = int(pos.size()); std::vector result(m); for (int i = 0; i < m; i++) { result[i] = get_edge(i); } return result; } std::pair flow(int s, int t) { return flow(s, t, std::numeric_limits::max()); } std::pair flow(int s, int t, Cap flow_limit) { return slope(s, t, flow_limit).back(); } std::vector> slope(int s, int t) { return slope(s, t, std::numeric_limits::max()); } std::vector> slope(int s, int t, Cap flow_limit) { assert(0 <= s && s < _n); assert(0 <= t && t < _n); assert(s != t); // variants (C = maxcost): // -(n-1)C <= dual[s] <= dual[i] <= dual[t] = 0 // reduced cost (= e.cost + dual[e.from] - dual[e.to]) >= 0 for all edge std::vector dual(_n, 0), dist(_n); std::vector pv(_n), pe(_n); std::vector vis(_n); auto dual_ref = [&]() { std::fill(dist.begin(), dist.end(), std::numeric_limits::max()); std::fill(pv.begin(), pv.end(), -1); std::fill(pe.begin(), pe.end(), -1); std::fill(vis.begin(), vis.end(), false); struct Q { Cost key; int to; bool operator<(Q r) const { return key > r.key; } }; std::priority_queue que; dist[s] = 0; que.push(Q{0, s}); while (!que.empty()) { int v = que.top().to; que.pop(); if (vis[v]) continue; vis[v] = true; if (v == t) break; // dist[v] = shortest(s, v) + dual[s] - dual[v] // dist[v] >= 0 (all reduced cost are positive) // dist[v] <= (n-1)C for (int i = 0; i < int(g[v].size()); i++) { auto e = g[v][i]; if (vis[e.to] || !e.cap) continue; // |-dual[e.to] + dual[v]| <= (n-1)C // cost <= C - -(n-1)C + 0 = nC Cost cost = e.cost - dual[e.to] + dual[v]; if (dist[e.to] - dist[v] > cost) { dist[e.to] = dist[v] + cost; pv[e.to] = v; pe[e.to] = i; que.push(Q{dist[e.to], e.to}); } } } if (!vis[t]) { return false; } for (int v = 0; v < _n; v++) { if (!vis[v]) continue; // dual[v] = dual[v] - dist[t] + dist[v] // = dual[v] - (shortest(s, t) + dual[s] - dual[t]) + (shortest(s, v) + dual[s] - dual[v]) // = - shortest(s, t) + dual[t] + shortest(s, v) // = shortest(s, v) - shortest(s, t) >= 0 - (n-1)C dual[v] -= dist[t] - dist[v]; } return true; }; Cap flow = 0; Cost cost = 0, prev_cost_per_flow = -1; std::vector> result; result.push_back({flow, cost}); while (flow < flow_limit) { if (!dual_ref()) break; Cap c = flow_limit - flow; for (int v = t; v != s; v = pv[v]) { c = std::min(c, g[pv[v]][pe[v]].cap); } for (int v = t; v != s; v = pv[v]) { auto& e = g[pv[v]][pe[v]]; e.cap -= c; g[v][e.rev].cap += c; } Cost d = -dual[s]; flow += c; cost += c * d; if (prev_cost_per_flow == d) { result.pop_back(); } result.push_back({flow, cost}); prev_cost_per_flow = d; } return result; } private: int _n; struct _edge { int to, rev; Cap cap; Cost cost; }; std::vector> pos; std::vector> g; }; } // namespace atcoder using namespace atcoder; // 忘れがち int main(){ cin.tie(0); ios::sync_with_stdio(false); // input ll N,M; cin>>N>>M; mcf_graph graph(N); rep(i,M){ ll a,b,c,d; cin>>a>>b>>c>>d; a--;b--; graph.add_edge(a,b,1,c); graph.add_edge(b,a,1,c); graph.add_edge(a,b,1,d); graph.add_edge(b,a,1,d); } ll flow_limit=2; auto pa = graph.flow(0,N-1,flow_limit); ll cost = pa.second; p(cost); return 0; }