use std::io::{self, Read as _, Write as _}; struct Scanner<'a>(std::str::SplitWhitespace<'a>); impl<'a> Scanner<'a> { fn new(s: &'a str) -> Self { Self(s.split_whitespace()) } fn next(&mut self) -> T where T: std::str::FromStr, T::Err: std::fmt::Debug, { let s = self.0.next().expect("found EOF"); match s.parse() { Ok(v) => v, Err(msg) => { println!( "parse error. T = {}, s = \"{}\": {:?}", std::any::type_name::(), s, msg ); panic!() } } } } pub mod algorithm { /* Description T: 体 a: T 上の n × n 行列 a の行列式を計算する。 時間計算量: Θ(n^3) 回の演算と Θ(n) 回の除算 オーソドックスな掃き出し法。 */ use super::other::Field; use super::other::{one, zero}; pub fn determinant(mut a: Vec>) -> T where T: Field + Clone, { let n = a.len(); for a in &a { assert_eq!(a.len(), n); } let mut res: T = one(); for col in 0..n { match (col..n).find(|&row| !a[row][col].is_zero()) { None => return zero(), Some(row) => { if row != col { a.swap(col, row); res = -res; } } } { let c = a[col][col].clone(); let inv_c = T::one() / c.clone(); for a in &mut a[col][col..] { *a *= inv_c.clone(); } res *= c; } let (p, r) = a.split_at_mut(col + 1); let p = p.last().unwrap(); for r in r { let c = r[col].clone(); for (p, r) in p[col..].iter().zip(&mut r[col..]) { *r -= c.clone() * p.clone(); } } } res } /* Description T: 半環 a: T 上の n × n 行列 f: 消去時の係数行列 a をガウスの消去法の手続きに従って上三角行列に変換する 時間計算量: Θ(n^3) 回の演算と Θ(n^2) 回の f の呼び出し */ use super::other::Semiring; pub fn manually_gaussian_elimination(a: &mut Vec>, mut f: F) where T: Semiring + Clone, F: FnMut([&T; 2]) -> [[T; 2]; 2], { let n = a.len(); for a in &*a { assert_eq!(a.len(), n); } for col in 0..n { let (x, y) = a.split_at_mut(col + 1); let x = x.last_mut().unwrap(); for y in y { let c = f([&x[col], &y[col]]); for (x, y) in x.iter_mut().zip(&mut *y) { let new_x = c[0][0].clone() * x.clone() + c[0][1].clone() * y.clone(); *y = c[1][0].clone() * x.clone() + c[1][1].clone() * y.clone(); *x = new_x; } assert!(y[col].is_zero()); } } } use super::other::Ring; use std::ops::Div; pub fn ext_gcd(x: [&T; 2]) -> [[T; 2]; 2] where T: Ring + Div + Clone + Eq, { use std::mem::swap; let mut mat = [[x[0].clone(), one(), zero()], [x[1].clone(), zero(), one()]]; let mut neg = false; while !mat[1][0].is_zero() { let q = mat[0][0].clone() / mat[1][0].clone(); for i in 0..3 { mat[0][i] -= q.clone() * mat[1][i].clone(); } let (x, y) = mat.split_at_mut(1); swap(x.last_mut().unwrap(), y.first_mut().unwrap()); neg ^= true; } if neg { for i in 1..3 { mat[1][i] = -mat[1][i].clone(); } } let c = [ [mat[0][1].clone(), mat[0][2].clone()], [mat[1][1].clone(), mat[1][2].clone()], ]; assert!((c[0][0].clone() * c[1][1].clone() - c[0][1].clone() * c[1][0].clone()) == one()); c } } pub mod other { use std::marker::Sized; use std::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Sub, SubAssign}; macro_rules! trait_alias { ($name:ident = $($t:tt)*) => { pub trait $name: $($t)* {} impl $name for T {} }; } trait_alias! {Semigroup = Add + Sized} trait_alias! {Band = Semigroup} trait_alias! {Monoid = Semigroup + Zero} trait_alias! {CommutativeMonoid = Monoid + AddAssign} trait_alias! {Group = Monoid + Neg} trait_alias! {Abelian = Group + CommutativeMonoid + Sub + SubAssign} trait_alias! {Semiring = CommutativeMonoid + Mul + Sized + One} trait_alias! {Ring = Semiring + Abelian} trait_alias! {CommutativeRing = Ring + MulAssign} trait_alias! {Field = CommutativeRing + Div + DivAssign} pub trait Zero { fn zero() -> Self; fn is_zero(&self) -> bool; } pub trait One { fn one() -> Self; } pub fn zero() -> T { T::zero() } pub fn one() -> T { T::one() } use std::convert::From; use std::iter; use std::ops; pub const P: u32 = 998244353; #[derive(Copy, Clone, Debug, Eq, PartialEq)] pub struct Fp(pub u32); impl Fp { pub fn pow(mut self, mut exp: u32) -> Fp { let mut res = Fp(1); while exp != 0 { if exp % 2 != 0 { res *= self; } self *= self; exp /= 2; } res } } impl Zero for Fp { fn zero() -> Fp { Fp(0) } fn is_zero(&self) -> bool { *self == Self::zero() } } impl One for Fp { fn one() -> Fp { Fp(1) } } macro_rules! impl_from_int { ($(($ty:ty: $via:ty)),*) => { $( impl From<$ty> for Fp { fn from(x: $ty) -> Fp { Fp((x as $via).rem_euclid(P as $via) as u32) } } )* }; } impl_from_int!( (i8: i32), (i16: i32), (i32: i32), (i64: i64), (u8: u32), (u16: u32), (u32: u32), (u64: u64), (isize: i64), (usize: u64) ); impl iter::Product for Fp { fn product(iter: I) -> Fp where I: Iterator, { iter.fold(Fp(1), |b, i| b * i) } } impl iter::Sum for Fp { fn sum(iter: I) -> Fp where I: Iterator, { iter.fold(Fp(0), |b, i| b + i) } } impl ops::Add for Fp { type Output = Fp; fn add(mut self, rhs: Fp) -> Fp { self += rhs; self } } impl ops::AddAssign for Fp { fn add_assign(&mut self, rhs: Fp) { self.0 += rhs.0; if self.0 >= P { self.0 -= P; } } } impl ops::Div for Fp { type Output = Fp; fn div(mut self, rhs: Fp) -> Fp { assert_ne!(rhs.0, 0); self /= rhs; self } } impl ops::DivAssign for Fp { fn div_assign(&mut self, rhs: Fp) { assert_ne!(rhs.0, 0); *self *= rhs.pow(P - 2); } } impl ops::Mul for Fp { type Output = Fp; fn mul(self, rhs: Fp) -> Fp { Fp((self.0 as u64 * rhs.0 as u64 % P as u64) as u32) } } impl ops::Mul for Fp { type Output = Fp; fn mul(self, rhs: usize) -> Fp { self * Fp::from(rhs) } } impl ops::MulAssign for Fp { fn mul_assign(&mut self, rhs: Fp) { *self = *self * rhs; } } impl ops::Neg for Fp { type Output = Fp; fn neg(self) -> Fp { Fp(match self.0 { 0 => 0, s => P - s, }) } } impl ops::Sub for Fp { type Output = Fp; fn sub(mut self, rhs: Fp) -> Fp { self -= rhs; self } } impl ops::SubAssign for Fp { fn sub_assign(&mut self, rhs: Fp) { if self.0 < rhs.0 { self.0 += P; } self.0 -= rhs.0; } } #[derive(Clone, Debug, Eq, PartialEq)] pub struct Linear(pub Fp, pub Fp); impl ops::Add for Linear { type Output = Linear; fn add(mut self, rhs: Linear) -> Linear { self += rhs; self } } impl ops::AddAssign for Linear { fn add_assign(&mut self, rhs: Linear) { self.0 += rhs.0; self.1 += rhs.1; } } impl ops::Mul for Linear { type Output = Linear; fn mul(self, rhs: Linear) -> Linear { Linear(self.0 * rhs.0, self.1 * rhs.0 + self.0 * rhs.1) } } impl ops::MulAssign for Linear { fn mul_assign(&mut self, rhs: Linear) { *self = self.clone() * rhs; } } impl ops::Neg for Linear { type Output = Linear; fn neg(self) -> Linear { Linear(-self.0, -self.1) } } impl ops::Sub for Linear { type Output = Linear; fn sub(mut self, rhs: Linear) -> Linear { self -= rhs; self } } impl ops::SubAssign for Linear { fn sub_assign(&mut self, rhs: Linear) { self.0 -= rhs.0; self.1 -= rhs.1; } } impl Zero for Linear { fn zero() -> Self { Self(Fp(0), Fp(0)) } fn is_zero(&self) -> bool { self == &zero() } } impl One for Linear { fn one() -> Self { Self(Fp(1), Fp(0)) } } impl std::ops::Div for Linear { type Output = Self; fn div(self, rhs: Self) -> Self { if rhs.1.is_zero() { Linear(self.0 / rhs.0, self.1 / rhs.0) } else { Linear(self.1 / rhs.1, zero()) } } } } use other::Fp; use other::Linear; use other::{One, Zero}; fn main() { let mut stdin = String::new(); std::io::stdin().read_to_string(&mut stdin).unwrap(); let mut sc = Scanner::new(&stdin); let stdout = io::stdout(); let mut stdout = io::BufWriter::new(stdout.lock()); // writeln!(stdout, ""); let n: usize = sc.next(); let m: usize = sc.next(); let mut g = vec![vec![false; n]; n]; let mut deg = vec![0usize; n]; for _ in 0..m { let u: usize = sc.next::() - 1; let v: usize = sc.next::() - 1; g[u][v] = true; g[v][u] = true; deg[u] += 1; deg[v] += 1; } let mut used = vec![false; n]; let mut size_list = vec![]; let mut part_prod = Fp(1); let mut is_connected = false; for root in 0..n { if used[root] { continue; } let mut v_list = vec![]; let mut stack = vec![root]; while let Some(v) = stack.pop() { if used[v] { continue; } used[v] = true; v_list.push(v); for (u, &f) in g[v].iter().enumerate() { if f { stack.push(u); } } } let len = v_list.len(); size_list.push(len); let mut mat = vec![vec![Fp(0); len - 1]; len - 1]; for (i, &u) in v_list[1..].iter().enumerate() { for (j, &v) in v_list[1..].iter().enumerate() { if i == j { mat[i][j] = Fp(deg[u] as u32); } else if g[u][v] { mat[i][j] = -Fp(1); } } } part_prod *= algorithm::determinant(mat); if len == n { is_connected = true; break; } } if !is_connected { use std::cmp::Reverse; let mut ans = (n as u64).pow(2); for &s in &size_list { ans -= (s as u64).pow(2); } size_list.sort_unstable_by_key(|&k| Reverse(k)); ans -= (size_list[0] as u64) * (size_list[1] as u64) * 2; let max = size_list[0]; let max_count = size_list.iter().filter(|&&s| s == max).count(); let max = Fp(max as u32); if max_count >= 2 { let max_count = Fp(max_count as u32); part_prod *= (max * max_count).pow(2) - max.pow(2) * max_count; part_prod /= Fp(2); } else { let second = size_list[1]; let sec_count = size_list.iter().filter(|&&s| s == second).count(); let sec_count = Fp(sec_count as u32); part_prod *= max * Fp(second as u32) * sec_count; } writeln!(stdout, "{}\n{}", ans, part_prod.0).unwrap(); stdout.flush().unwrap(); return; } let mut mat = vec![vec![Linear::zero(); n - 1]; n - 1]; for u in 0..n - 1 { for v in 0..n - 1 { if u == v { mat[u][v] = Linear(deg[u].into(), (n - 1 - deg[u]).into()); } else if g[u][v] { mat[u][v].0 = (-1).into(); } else { mat[u][v].1 = 1.into(); } } } algorithm::manually_gaussian_elimination(&mut mat, algorithm::ext_gcd); let mut prod = Linear::one(); for i in 0..n - 1 { prod *= mat[i][i].clone(); } //writeln!(stdout, "0\n{}", (prod.0 + prod.1).0).unwrap(); stdout.flush().unwrap(); }