# Binary Indexed Tree (Fenwick Tree) 1-indexed class BIT: def __init__(self, n): self.n = n self.bit = [0]*(n+1) self.el = [0]*(n+1) def sum(self, i): #1~iまで足す s = 0 while i > 0: s += self.bit[i] i -= i & -i return s def add(self, i, x): # assert i > 0 self.el[i] += x while i <= self.n: self.bit[i] += x i += i & -i def get(self, i, j=None): if j is None: return self.el[i] return self.sum(j) - self.sum(i-1) def lower_bound(self,x): w = i = 0 k = 1<<((self.n).bit_length()) while k: if i+k <= self.n and w + self.bit[i+k] < x: w += self.bit[i+k] i += k k >>= 1 return i+1 N = int(input()) total1 = BIT(N) total2 = BIT(N) cnt1 = BIT(N) cnt2 = BIT(N) A = list(map(int, input().split())) comp = lambda arr: {e: i+1 for i, e in enumerate(sorted(set(arr)))} compA = comp(A) MOD = 998244353 B = A[::-1] ans = 0 S,T = [0]*N,[0]*N n,m = [0]*N,[0]*N for i in range(N): total1.add(compA[A[i]], A[i]) cnt1.add(compA[A[i]], 1) S[i] = total1.get(compA[A[i]]+1,N)%MOD n[i] = cnt1.get(compA[A[i]]+1,N) for i in range(N): total2.add(compA[B[i]], B[i]) cnt2.add(compA[B[i]], 1) T[N-1-i] = total2.sum(compA[B[i]]-1)%MOD m[N-1-i] = cnt2.sum(compA[B[i]]-1) for i in range(N): ans += S[i]*m[i] + T[i]*n[i] + A[i]*m[i]*n[i] ans %= MOD print(ans)