#![allow(unused_imports, unused_macros)] use kyoproio::*; use std::{ collections::*, io::{self, prelude::*}, iter, mem::{replace, swap}, }; fn run(mut kin: I, mut out: O) { macro_rules! output { ($($args:expr),+) => { write!(&mut out, $($args),+).unwrap(); }; } macro_rules! outputln { ($($args:expr),+) => { output!($($args),+); outputln!(); }; () => { output!("\n"); if cfg!(debug_assertions) { out.flush().unwrap(); } } } let (k, m, n): (usize, usize, u64) = kin.input(); let mut mat = SquareMat::zeros(k * k); let mut vec = vec![mint(0); k * k]; for (p, q, r) in kin.iter::<(usize, usize, usize)>().take(m) { let (p, q, r) = (p - 1, q - 1, r - 1); mat[k * q + r][k * p + q] = mint(1); if p == 0 { vec[q] = mint(1); } } mat = mat.pow(n - 2); let vec2 = &mat * &vec; let mut ans = mint(0); for i in 0..k { ans += vec2[k * i]; } outputln!("{}", ans); } use std::ops; pub trait Zero { fn zero() -> Self; } pub trait One { fn one() -> Self; } #[derive(Clone)] pub struct SquareMat { a: Box<[T]>, n: usize, } impl SquareMat { pub fn zeros(n: usize) -> Self { Self { a: (0..n * n).map(|_| T::zero()).collect(), n, } } } impl SquareMat { pub fn id(n: usize) -> Self { let mut mat = Self::zeros(n); for i in 0..n { mat[i][i] = T::one(); } mat } } impl SquareMat { pub fn deg(&self) -> usize { self.n } pub fn transpose(mut self) -> Self { for i in 0..self.n { for j in i + 1..self.n { unsafe { std::ptr::swap(&mut self[i][j], &mut self[j][i]); } } } self } pub fn iter(&self) -> Iter { Iter { mat: self, i: 0 } } pub fn get(&self, i: usize) -> Option<&[T]> { debug_assert_eq!(self.n * self.n, self.a.len()); if i < self.n { unsafe { Some(self.a.get_unchecked(self.n * i..self.n * (i + 1))) } } else { None } } pub fn get_mut(&mut self, i: usize) -> Option<&mut [T]> { debug_assert_eq!(self.n * self.n, self.a.len()); if i < self.n { unsafe { Some(self.a.get_unchecked_mut(self.n * i..self.n * (i + 1))) } } else { None } } } impl SquareMat where for<'a> &'a T: ops::Mul, { pub fn pow(mut self, mut k: u64) -> Self { let mut res = Self::id(self.n); let mut tmp = Self::zeros(self.n); loop { if k % 2 == 1 { for j in 0..self.n { for i in 0..self.n { tmp[j][i] = T::zero(); for k in 0..self.n { tmp[j][i] += &self[i][k] * &res[j][k]; } } } std::mem::swap(&mut res, &mut tmp); } k /= 2; if k == 0 { return res.transpose(); } tmp.mul_write(&self, &self); std::mem::swap(&mut self, &mut tmp); } } } impl SquareMat where for<'a> &'a T: ops::Mul, { fn mul_write(&mut self, a: &Self, b: &Self) { assert_eq!(self.n, a.n); assert_eq!(self.n, b.n); for i in 0..self.n { for j in 0..self.n { self[i][j] = T::zero(); for k in 0..self.n { self[i][j] += &a[i][k] * &b[k][j]; } } } } } impl> ops::Mul<&[T]> for &SquareMat where for<'a> &'a T: ops::Mul, { type Output = Vec; fn mul(self, v: &[T]) -> Self::Output { self.iter() .map(|r| { r.iter() .zip(v.iter()) .map(|(x, y)| x * y) .fold(T::zero(), |x, y| x + y) }) .collect() } } impl ops::Index for SquareMat { type Output = [T]; fn index(&self, i: usize) -> &[T] { assert!(i < self.n, "deg = {}, i = {}", self.n, i); self.get(i).unwrap() } } impl ops::IndexMut for SquareMat { fn index_mut(&mut self, i: usize) -> &mut [T] { assert!(i < self.n, "deg = {}, i = {}", self.n, i); self.get_mut(i).unwrap() } } impl fmt::Debug for SquareMat { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_list() .entries((0..self.n).map(|i| &self[i])) .finish() } } pub struct Iter<'a, T> { mat: &'a SquareMat, i: usize, } impl<'a, T> Iterator for Iter<'a, T> { type Item = &'a [T]; fn next(&mut self) -> Option { if self.i < self.mat.n { let i = self.i; self.i += 1; Some(&self.mat[i]) } else { None } } } impl Zero for ModInt { fn zero() -> Self { Self::new(0) } } impl One for ModInt { fn one() -> Self { Self::new(1) } } pub type Mint = ModInt; pub fn mint(x: i32) -> Mint { ModInt::new(x) } pub trait Modulo { fn modulo() -> i32; } macro_rules! modulo_impl { ($($Type:ident $val:tt)*) => { $(pub struct $Type; impl Modulo for $Type { fn modulo() -> i32 { $val } })* }; } modulo_impl!(Mod998244353 998244353 Mod1e9p7 1000000007); use std::sync::atomic; pub struct VarMod; static VAR_MOD: atomic::AtomicI32 = atomic::AtomicI32::new(0); pub fn set_var_mod(m: i32) { VAR_MOD.store(m, atomic::Ordering::Relaxed); } impl Modulo for VarMod { fn modulo() -> i32 { VAR_MOD.load(atomic::Ordering::Relaxed) } } use std::{fmt, marker::PhantomData /*ops*/}; pub struct ModInt(i32, PhantomData); impl ModInt { pub fn new(x: i32) -> Self { debug_assert!(x < M::modulo()); Self(x, PhantomData) } pub fn normalize(self) -> Self { if self.0 < M::modulo() && 0 <= self.0 { self } else { Self::new(self.0.rem_euclid(M::modulo())) } } pub fn get(self) -> i32 { self.0 } pub fn inv(self) -> Self { self.pow(M::modulo() - 2) } pub fn half(self) -> Self { Self::new(self.0 / 2 + self.0 % 2 * ((M::modulo() + 1) / 2)) } pub fn modulo() -> i32 { M::modulo() } } impl ops::Neg for ModInt { type Output = Self; fn neg(self) -> Self { Self::new(if self.0 == 0 { 0 } else { M::modulo() - self.0 }) } } impl ops::AddAssign for ModInt { fn add_assign(&mut self, rhs: Self) { self.0 += rhs.0; if self.0 >= M::modulo() { self.0 -= M::modulo(); } } } impl ops::SubAssign for ModInt { fn sub_assign(&mut self, rhs: Self) { self.0 -= rhs.0; if self.0 < 0 { self.0 += M::modulo(); } } } impl ops::MulAssign for ModInt { fn mul_assign(&mut self, rhs: Self) { self.0 = (self.0 as u32 as u64 * rhs.0 as u32 as u64 % M::modulo() as u32 as u64) as i32; } } impl ops::DivAssign for ModInt { fn div_assign(&mut self, rhs: Self) { assert_ne!(rhs.get(), 0); *self *= rhs.inv(); } } macro_rules! op_impl { ($($Op:ident $op:ident $OpAssign:ident $op_assign:ident)*) => { $(impl ops::$Op for ModInt { type Output = Self; fn $op(self, rhs: Self) -> Self { let mut res = self; ops::$OpAssign::$op_assign(&mut res, rhs); res } } impl ops::$Op<&Self> for ModInt { type Output = Self; fn $op(self, rhs: &Self) -> Self { self.$op(*rhs) } } impl ops::$Op> for &ModInt { type Output = ModInt; fn $op(self, rhs: ModInt) -> ModInt { (*self).$op(rhs) } } impl ops::$Op<&ModInt> for &ModInt { type Output = ModInt; fn $op(self, rhs: &ModInt) -> ModInt { (*self).$op(*rhs) } } impl ops::$OpAssign<&ModInt> for ModInt { fn $op_assign(&mut self, rhs: &ModInt) { self.$op_assign(*rhs); } })* }; } op_impl! { Add add AddAssign add_assign Sub sub SubAssign sub_assign Mul mul MulAssign mul_assign Div div DivAssign div_assign } impl std::iter::Sum for ModInt { fn sum>(iter: I) -> Self { iter.fold(ModInt::new(0), |x, y| x + y) } } impl std::iter::Product for ModInt { fn product>(iter: I) -> Self { iter.fold(ModInt::new(1), |x, y| x * y) } } pub trait Pow { fn pow(self, n: T) -> Self; } impl Pow for ModInt { fn pow(mut self, mut n: u32) -> Self { let mut y = Self::new(1); while n > 0 { if n % 2 == 1 { y *= self; } self *= self; n /= 2; } y } } macro_rules! mod_int_pow_impl { ($($T:ident)*) => { $(impl Pow<$T> for ModInt { fn pow(self, n: $T) -> Self { self.pow(n.rem_euclid(M::modulo() as $T - 1) as u32) } })* }; } mod_int_pow_impl!(isize i32 i64 usize u64); macro_rules! mod_int_from_impl { ($($T:ident)*) => { $(impl From<$T> for ModInt { fn from(x: $T) -> Self { if M::modulo() <= $T::max_value() as i32 { Self::new(x.rem_euclid(M::modulo() as $T) as i32) } else { Self::new(x as i32).normalize() } } })* } } mod_int_from_impl!(isize i8 i16 i32 i64 i128 usize u8 u16 u32 u64 u128); impl Copy for ModInt {} impl Clone for ModInt { fn clone(&self) -> Self { *self } } impl Default for ModInt { fn default() -> Self { Self::new(0) } } impl std::cmp::PartialEq for ModInt { fn eq(&self, other: &Self) -> bool { self.0 == other.0 } } impl std::cmp::Eq for ModInt {} impl std::cmp::PartialOrd for ModInt { fn partial_cmp(&self, other: &Self) -> Option { self.0.partial_cmp(&other.0) } } impl std::cmp::Ord for ModInt { fn cmp(&self, other: &Self) -> std::cmp::Ordering { self.0.cmp(&other.0) } } impl std::hash::Hash for ModInt { fn hash(&self, state: &mut H) { self.0.hash(state); } } impl fmt::Display for ModInt { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { self.0.fmt(f) } } impl fmt::Debug for ModInt { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { self.0.fmt(f) } } // ----------------------------------------------------------------------------- fn main() -> io::Result<()> { std::thread::Builder::new() .stack_size(64 * 1024 * 1024) .spawn(|| { run( KInput::new(io::stdin()), io::BufWriter::new(io::stdout().lock()), ) })? .join() .unwrap(); Ok(()) } // ----------------------------------------------------------------------------- pub mod kyoproio { use std::{io::prelude::*, mem}; pub trait Input { fn bytes(&mut self) -> &[u8]; fn str(&mut self) -> &str { std::str::from_utf8(self.bytes()).unwrap() } fn input(&mut self) -> T { T::input(self) } fn iter(&mut self) -> Iter { Iter(self, std::marker::PhantomData) } fn seq>(&mut self, n: usize) -> B { self.iter().take(n).collect() } } pub struct KInput { src: R, buf: Vec, pos: usize, len: usize, } impl KInput { pub fn new(src: R) -> Self { Self { src, buf: vec![0; 1 << 16], pos: 0, len: 0, } } } impl Input for KInput { fn bytes(&mut self) -> &[u8] { loop { while let Some(delim) = self.buf[self.pos..self.len] .iter() .position(|b| b.is_ascii_whitespace()) { let p = self.pos; self.pos += delim + 1; if delim > 0 { return &self.buf[p..p + delim]; } } if self.read() == 0 { return &self.buf[mem::replace(&mut self.pos, self.len)..self.len]; } } } } impl KInput { fn read(&mut self) -> usize { if self.pos > 0 { self.buf.copy_within(self.pos..self.len, 0); self.len -= self.pos; self.pos = 0; } else if self.len >= self.buf.len() { self.buf.resize(2 * self.buf.len(), 0); } let read = self.src.read(&mut self.buf[self.len..]).unwrap(); self.len += read; read } } pub struct Iter<'a, T, I: ?Sized>(&'a mut I, std::marker::PhantomData<*const T>); impl<'a, T: InputParse, I: Input + ?Sized> Iterator for Iter<'a, T, I> { type Item = T; fn next(&mut self) -> Option { Some(self.0.input()) } fn size_hint(&self) -> (usize, Option) { (!0, None) } } pub trait InputParse: Sized { fn input(src: &mut I) -> Self; } impl InputParse for Vec { fn input(src: &mut I) -> Self { src.bytes().to_owned() } } macro_rules! from_str_impl { { $($T:ty)* } => { $(impl InputParse for $T { fn input(src: &mut I) -> Self { src.str().parse::<$T>().unwrap() } })* } } from_str_impl! { String char bool f32 f64 } macro_rules! parse_int_impl { { $($I:ty: $U:ty)* } => { $(impl InputParse for $I { fn input(src: &mut I) -> Self { let f = |s: &[u8]| s.iter().fold(0, |x, b| 10 * x + (b & 0xf) as $I); let s = src.bytes(); if let Some((&b'-', t)) = s.split_first() { -f(t) } else { f(s) } } } impl InputParse for $U { fn input(src: &mut I) -> Self { src.bytes().iter().fold(0, |x, b| 10 * x + (b & 0xf) as $U) } })* }; } parse_int_impl! { isize:usize i8:u8 i16:u16 i32:u32 i64:u64 i128:u128 } macro_rules! tuple_impl { ($H:ident $($T:ident)*) => { impl<$H: InputParse, $($T: InputParse),*> InputParse for ($H, $($T),*) { fn input(src: &mut I) -> Self { ($H::input(src), $($T::input(src)),*) } } tuple_impl!($($T)*); }; () => {} } tuple_impl!(A B C D E F G); macro_rules! array_impl { { $($N:literal)* } => { $(impl InputParse for [T; $N] { fn input(src: &mut I) -> Self { let mut arr = mem::MaybeUninit::uninit(); unsafe { let ptr = arr.as_mut_ptr() as *mut T; for i in 0..$N { ptr.add(i).write(src.input()); } arr.assume_init() } } })* }; } array_impl! { 1 2 3 4 5 6 7 8 } #[macro_export] macro_rules! kdbg { ($($v:expr),*) => { if cfg!(debug_assertions) { dbg!($($v),*) } else { ($($v),*) } } } }