#![allow(unused_imports, unused_macros)] use kyoproio::*; use std::{ collections::*, io::{self, prelude::*}, iter, mem::{replace, swap}, }; fn run(mut kin: I, mut out: O) { let n: usize = kin.input(); let mut lst: LazySegTree = kin.iter::().take(n).map(|x| S(1, x, x * x)).collect(); // eprintln!("{:?}", &lst.ss); let q: usize = kin.input(); for _ in 0..q { let ty: u32 = kin.input(); if ty == 1 { let (l, r, x): (usize, usize, i64) = kin.input(); lst.apply(l - 1, r, &F(x)); } else { let (l, r): (usize, usize) = kin.input(); let s = lst.prod(l - 1, r); // eprintln!("{:?}", &s); outln!(out, s.2); } } } #[derive(Debug)] struct S(i64, i64, i64); struct F(i64); impl Monoid for S { fn id() -> Self { S(0, 0, 0) } fn op(&self, other: &Self) -> Self { S(self.0 + other.0, self.1 + other.1, self.2 + other.2) } } impl Monoid for F { fn id() -> Self { F(0) } fn op(&self, other: &Self) -> Self { F(self.0 + other.0) } } impl Map for F { fn map(&self, a: S) -> S { // (a1 + x) ^ 2 + (a2 + x) ^ 2 + ... + (an + x) ^ 2 // (a1^2 + 2a1x + x^2) + (a2^2 + 2a2x + x^2) + ... // (a1^2 + a2^2 + ...) + 2x(a1 + a2 + ...) + nx^2 let S(n, a, asq) = a; let x = self.0; S(n, a + n * x, asq + 2 * a * x + n * x * x) } } pub trait Monoid { fn id() -> Self; fn op(&self, other: &Self) -> Self; } pub trait Map { fn map(&self, x: T) -> T; } pub struct LazySegTree { ss: Box<[T]>, fs: Box<[F]>, } impl> LazySegTree { pub fn new(n: usize) -> Self { use std::iter::repeat_with; let len = 2 * n.next_power_of_two(); Self { ss: repeat_with(T::id).take(len).collect(), fs: repeat_with(F::id).take(len).collect(), } } fn len(&self) -> usize { self.ss.len() / 2 } fn propagate(&mut self, i: usize) { let h = 8 * std::mem::size_of::() as u32 - i.leading_zeros(); for k in (1..h).rev() { let p = i >> k; let l = 2 * p; let r = 2 * p + 1; self.ss[l] = self.fs[p].map(std::mem::replace(&mut self.ss[l], T::id())); self.ss[r] = self.fs[p].map(std::mem::replace(&mut self.ss[r], T::id())); self.fs[l] = self.fs[p].op(&self.fs[l]); self.fs[r] = self.fs[p].op(&self.fs[r]); self.fs[p] = F::id(); } } pub fn prod(&mut self, l: usize, r: usize) -> T { assert!(l <= r); assert!(r <= self.len()); let mut l = l + self.len(); let mut r = r + self.len(); self.propagate(l >> l.trailing_zeros()); self.propagate((r >> r.trailing_zeros()) - 1); let mut lv = T::id(); let mut rv = T::id(); while l < r { if l % 2 == 1 { lv = lv.op(&self.ss[l]); l += 1; } if r % 2 == 1 { r -= 1; rv = rv.op(&self.ss[r]); } l /= 2; r /= 2; } lv.op(&rv) } pub fn set(&mut self, i: usize, v: T) { let mut i = i + self.len(); self.propagate(i); self.ss[i] = v; while i > 1 { i /= 2; self.ss[i] = self.ss[2 * i].op(&self.ss[2 * i + 1]); } } pub fn apply(&mut self, l: usize, r: usize, f: &F) { assert!(l <= r); assert!(r <= self.len()); let mut li = l + self.len(); let mut ri = r + self.len(); let ln = li >> li.trailing_zeros(); let rn = ri >> ri.trailing_zeros(); self.propagate(ln); self.propagate(rn - 1); while li < ri { if li % 2 == 1 { self.fs[li] = f.op(&self.fs[li]); self.ss[li] = f.map(std::mem::replace(&mut self.ss[li], T::id())); li += 1; } if ri % 2 == 1 { ri -= 1; self.fs[ri] = f.op(&self.fs[ri]); self.ss[ri] = f.map(std::mem::replace(&mut self.ss[ri], T::id())); } li /= 2; ri /= 2; } let mut l = (l + self.len()) / 2; let mut r = (r + self.len() - 1) / 2; while l > 0 { if l < ln { self.ss[l] = self.ss[2 * l].op(&self.ss[2 * l + 1]); } if /*l != r && */ r < rn - 1 { self.ss[r] = self.ss[2 * r].op(&self.ss[2 * r + 1]); } l /= 2; r /= 2; } } } impl> std::iter::FromIterator for LazySegTree { fn from_iter>(iter: I) -> Self { let mut ss: Vec<_> = iter.into_iter().collect(); let iter_n = ss.len(); let n = iter_n.next_power_of_two(); ss.splice(..0, std::iter::repeat_with(T::id).take(n)); ss.extend(std::iter::repeat_with(T::id).take(n - iter_n)); debug_assert_eq!(ss.len(), 2 * n); for i in (1..n).rev() { ss[i] = ss[2 * i].op(&ss[2 * i + 1]); } Self { ss: ss.into(), fs: std::iter::repeat_with(F::id).take(2 * n).collect(), } } } // ----------------------------------------------------------------------------- fn main() -> io::Result<()> { std::thread::Builder::new() .stack_size(64 * 1024 * 1024) .spawn(|| { run( KInput::new(io::stdin().lock()), io::BufWriter::new(io::stdout().lock()), ) })? .join() .unwrap(); Ok(()) } // ----------------------------------------------------------------------------- pub mod kyoproio { use std::{ io::prelude::*, iter::FromIterator, marker::PhantomData, mem::{self, MaybeUninit}, ptr, slice, str, }; pub trait Input { fn bytes(&mut self) -> &[u8]; fn str(&mut self) -> &str { str::from_utf8(self.bytes()).unwrap() } fn input(&mut self) -> T { T::input(self) } fn iter(&mut self) -> Iter { Iter(self, PhantomData) } fn seq>(&mut self, n: usize) -> B { self.iter().take(n).collect() } } pub struct KInput { src: R, buf: Vec, pos: usize, len: usize, } impl KInput { pub fn new(src: R) -> Self { Self { src, buf: vec![0; 1 << 16], pos: 0, len: 0, } } fn read(&mut self) -> usize { if self.pos > 0 { self.buf.copy_within(self.pos..self.len, 0); self.len -= self.pos; self.pos = 0; } else if self.len >= self.buf.len() { self.buf.resize(2 * self.buf.len(), 0); } let read = self.src.read(&mut self.buf[self.len..]).unwrap(); self.len += read; read } } impl Input for KInput { fn bytes(&mut self) -> &[u8] { loop { while let Some(d) = self.buf[self.pos..self.len] .iter() .position(u8::is_ascii_whitespace) { let p = self.pos; self.pos += d + 1; if d > 0 { return &self.buf[p..p + d]; } } if self.read() == 0 { return &self.buf[mem::replace(&mut self.pos, self.len)..self.len]; } } } } pub struct Iter<'a, T, I: ?Sized>(&'a mut I, PhantomData<*const T>); impl<'a, T: InputItem, I: Input + ?Sized> Iterator for Iter<'a, T, I> { type Item = T; fn next(&mut self) -> Option { Some(self.0.input()) } fn size_hint(&self) -> (usize, Option) { (!0, None) } } pub trait InputItem: Sized { fn input(src: &mut I) -> Self; } impl InputItem for Vec { fn input(src: &mut I) -> Self { src.bytes().to_owned() } } macro_rules! from_str_impl { { $($T:ty)* } => { $(impl InputItem for $T { fn input(src: &mut I) -> Self { src.str().parse::<$T>().unwrap() } })* } } from_str_impl! { String char bool f32 f64 } macro_rules! parse_int_impl { { $($I:ty: $U:ty)* } => { $(impl InputItem for $I { fn input(src: &mut I) -> Self { let f = |s: &[u8]| s.iter().fold(0, |x, b| 10 * x + (b & 0xf) as $I); let s = src.bytes(); if let Some((&b'-', t)) = s.split_first() { -f(t) } else { f(s) } } } impl InputItem for $U { fn input(src: &mut I) -> Self { src.bytes().iter().fold(0, |x, b| 10 * x + (b & 0xf) as $U) } })* }; } parse_int_impl! { isize:usize i8:u8 i16:u16 i32:u32 i64:u64 i128:u128 } macro_rules! tuple_impl { ($H:ident $($T:ident)*) => { impl<$H: InputItem, $($T: InputItem),*> InputItem for ($H, $($T),*) { fn input(src: &mut I) -> Self { ($H::input(src), $($T::input(src)),*) } } tuple_impl!($($T)*); }; () => {} } tuple_impl!(A B C D E F G); macro_rules! array_impl { { $($N:literal)* } => { $(impl InputItem for [T; $N] { fn input(src: &mut I) -> Self { let mut arr = MaybeUninit::uninit(); let ptr = arr.as_mut_ptr() as *mut T; unsafe { for i in 0..$N { ptr.add(i).write(src.input()); } arr.assume_init() } } })* }; } array_impl! { 1 2 3 4 5 6 7 8 } pub trait Output: Write + Sized { fn bytes(&mut self, buf: &[u8]) { self.write_all(buf).unwrap(); } fn output(&mut self, x: T) { x.output(self); } fn byte(&mut self, b: u8) { self.bytes(slice::from_ref(&b)); } fn seq>(&mut self, iter: I, delim: u8) { let mut iter = iter.into_iter(); if let Some(x) = iter.next() { self.output(x); for x in iter { self.byte(delim); self.output(x); } } } fn flush_debug(&mut self) { if cfg!(debug_assertions) { self.flush().unwrap(); } } } impl Output for W {} pub trait OutputItem { fn output(self, dest: &mut O); } impl OutputItem for &str { fn output(self, dest: &mut O) { dest.bytes(self.as_bytes()); } } macro_rules! output_int_impl { ($conv:ident; $U:ty; $($T:ty)*) => { $(impl OutputItem for $T { fn output(self, dest: &mut O) { let mut buf = MaybeUninit::<[u8; 20]>::uninit(); unsafe { let ptr = buf.as_mut_ptr() as *mut u8; let ofs = $conv(self as $U, ptr, 20); dest.bytes(slice::from_raw_parts(ptr.add(ofs), 20 - ofs)); } } } impl OutputItem for &$T { fn output(self, dest: &mut O) { (*self).output(dest); } })* }; } output_int_impl!(i64_to_bytes; i64; isize i8 i16 i32 i64); output_int_impl!(u64_to_bytes; u64; usize u8 u16 u32 u64); static DIGITS_LUT: &[u8; 200] = b"0001020304050607080910111213141516171819\ 2021222324252627282930313233343536373839\ 4041424344454647484950515253545556575859\ 6061626364656667686970717273747576777879\ 8081828384858687888990919293949596979899"; unsafe fn i64_to_bytes(x: i64, buf: *mut u8, len: usize) -> usize { let (neg, x) = if x < 0 { (true, -x) } else { (false, x) }; let mut i = u64_to_bytes(x as u64, buf, len); if neg { i -= 1; *buf.add(i) = b'-'; } i } unsafe fn u64_to_bytes(mut x: u64, buf: *mut u8, len: usize) -> usize { let lut = DIGITS_LUT.as_ptr(); let mut i = len; let mut two = |x| { i -= 2; ptr::copy_nonoverlapping(lut.add(2 * x), buf.add(i), 2); }; while x >= 10000 { let rem = (x % 10000) as usize; two(rem % 100); two(rem / 100); x /= 10000; } let mut x = x as usize; if x >= 100 { two(x % 100); x /= 100; } if x >= 10 { two(x); } else { i -= 1; *buf.add(i) = x as u8 + b'0'; } i } #[macro_export] macro_rules! out { ($out:expr, $arg:expr) => { $out.output($arg); }; ($out:expr, $first:expr, $($rest:expr),*) => { $out.output($first); $out.ws(); out!($out, $($rest),*); } } #[macro_export] macro_rules! outln { ($out:expr, $($args:expr),*) => { out!($out, $($args),*); $out.byte(b'\n'); $out.flush_debug(); } } #[macro_export] macro_rules! kdbg { ($($v:expr),*) => { if cfg!(debug_assertions) { dbg!($($v),*) } else { ($($v),*) } } } }