#include using namespace std; #define all(hoge) (hoge).begin(), (hoge).end() #define en '\n' using ll = long long; using ull = unsigned long long; #define rep(i, m, n) for(ll i = (ll)(m); i < (ll)(n); ++i) #define rep2(i, m, n) for(ll i = (ll)(n)-1; i >= (ll)(m); --i) #define REP(i, n) rep(i, 0, n) #define REP2(i, n) rep2(i, 0, n) template using vec = vector; template using vvec = vector>; typedef pair P; using tp = tuple; constexpr long long INF = 1LL << 60; constexpr int INF_INT = 1 << 25; //constexpr long long MOD = (ll) 1e9 + 7; constexpr long long MOD = 998244353LL; using ld = long double; static const ld pi = 3.141592653589793L; using Array = vector; using Matrix = vector; /* #pragma GCC target("avx2") #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") */ template inline bool chmin(T &a, T b) { if (a > b) { a = b; return true; } return false; } template inline bool chmax(T &a, T b) { if (a < b) { a = b; return true; } return false; } template struct NumberTheoreticTransform { vector rev, rts; int base, max_base, root; NumberTheoreticTransform() : base(1), rev{0, 1}, rts{0, 1} { assert(mod >= 3 && mod % 2 == 1); auto tmp = mod - 1; max_base = 0; while(tmp % 2 == 0) tmp >>= 1, max_base++; root = 2; while(mod_pow(root, (mod - 1) >> 1) == 1) ++root; assert(mod_pow(root, mod - 1) == 1); root = mod_pow(root, (mod - 1) >> max_base); } inline int mod_pow(int x, int n) { int ret = 1; while(n > 0) { if(n & 1) ret = mul(ret, x); x = mul(x, x); n >>= 1; } return ret; } inline int inverse(int x) { return mod_pow(x, mod - 2); } inline unsigned add(unsigned x, unsigned y) { x += y; if(x >= mod) x -= mod; return x; } inline unsigned mul(unsigned a, unsigned b) { return 1ull * a * b % (unsigned long long)mod; } void ensure_base(int nbase) { if(nbase <= base) return; rev.resize(1 << nbase); rts.resize(1 << nbase); for(int i = 0; i < (1 << nbase); i++) { rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (nbase - 1)); } assert(nbase <= max_base); while(base < nbase) { int z = mod_pow(root, 1 << (max_base - 1 - base)); for(int i = 1 << (base - 1); i < (1 << base); i++) { rts[i << 1] = rts[i]; rts[(i << 1) + 1] = mul(rts[i], z); } ++base; } } void ntt(vector &a) { const int n = (int)a.size(); assert((n & (n - 1)) == 0); int zeros = __builtin_ctz(n); ensure_base(zeros); int shift = base - zeros; for(int i = 0; i < n; i++) { if(i < (rev[i] >> shift)) { swap(a[i], a[rev[i] >> shift]); } } for(int k = 1; k < n; k <<= 1) { for(int i = 0; i < n; i += 2 * k) { for(int j = 0; j < k; j++) { int z = mul(a[i + j + k], rts[j + k]); a[i + j + k] = add(a[i + j], mod - z); a[i + j] = add(a[i + j], z); } } } } vector multiply(vector a, vector b) { int need = a.size() + b.size() - 1; int nbase = 1; while((1 << nbase) < need) nbase++; ensure_base(nbase); int sz = 1 << nbase; a.resize(sz, 0); b.resize(sz, 0); ntt(a); ntt(b); int inv_sz = inverse(sz); for(int i = 0; i < sz; i++) { a[i] = mul(a[i], mul(b[i], inv_sz)); } reverse(a.begin() + 1, a.end()); ntt(a); a.resize(need); return a; } vector pow(vector a, int k) { if(k <= 1) return a; if(k & 1) return multiply(a, pow(a, k - 1)); else return pow(multiply(a, a), k / 2); } }; NumberTheoreticTransform ntt; void solve() { int n,q; cin>>n>>q; vec a(n); REP(i,n){ cin>>a[i]; } vec R(n,0); REP(i,q){ ll r; cin>>r; r = (n-r)%n; R[r]++; } auto ret = ntt.multiply(a,R); vec ans(n); REP(i,ret.size()){ ans[i%n]+=ret[i]; } for(auto i:ans)cout<> t; REP(i, t - 1) { solve(); }*/ solve(); return 0; }