import collections import math def solve(N, L, R): if R < N: return 0 if L > 6 * N: return 0 if L < N and R > 6 * N: return 1 if N < 100: return solve_exact(N, L, R) else: return solve_approximate(N, L, R) def solve_exact(N, L, R): fs = {0: 1} for n in range(N-1, -1, -1): nfs = collections.defaultdict(float) for v, p in fs.items(): for dice in range(1, 7): nv = v + dice if nv + n <= R and nv + n * 6 >= L: nfs[nv] += p fs = nfs cum = 0 for v, p in fs.items(): if L <= v and v <= R: cum += p return cum/(6**N) def solve_approximate(N, L, R): E = N * 3.5 # Var = N * 35/12 if R >= N * 6: pR = 0.5 elif R < N: pR = -0.5 else: pR = math.erf((2*R + 1 - N * 7)/math.sqrt(N*70/3)) / 2 if L >= N * 6: pL = 0.5 elif L < N: pL = -0.5 else: pL = math.erf((2*L - 1 - N * 7)/math.sqrt(N*70/3)) / 2 return pR - pL def phi(x): return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0 N = int(input()) L, R = map(int, input().split()) print('{:f}'.format(solve(N, L, R)))