#![allow(unused_imports, unused_macros)] use kyoproio::*; use std::{ collections::*, io::{self, prelude::*}, iter, mem::{replace, swap}, }; fn run(mut kin: I, mut out: O) { let (n, q, c): (usize, usize, i64) = kin.input(); let mut g = LabeledGraph::builder(n + 1); for (u, v, l) in kin.iter::<(usize, usize, i64)>().take(n - 1) { g.edge(u, v, l); g.edge(v, u, l); } let g = g.build(); let x: Vec = kin.seq(q); let hld = Hld::new(&g, 1); let mut dist = vec![vec![1 << 60; n + 1]; n + 1]; for u in 1..=n { dist[u][u] = 0; dfs(&g, &mut dist[u], u, 0); } let mut sum = vec![0; q]; for i in 1..q { sum[i] = sum[i - 1] + dist[x[i - 1]][x[i]]; } let mut dp = vec![0; q]; for i in 1..q { dp[i] = sum[i]; for j in 1..i { let (u, v, w) = (x[j - 1], x[j], x[i]); let auv = hld.lca(u, v); let auw = hld.lca(u, w); let avw = hld.lca(v, w); let z = if auw == w && avw == w { // w // | // z // / \ // u v auv } else if auv == u && auw == u { avw } else if auv == v && avw == v { auw } else { w }; dp[i] = dp[i].min(dp[j - 1] + (sum[i - 1] - sum[j - 1]) + c + dist[z][w]); } } // eprintln!("{:?}", sum); // eprintln!("{:?}", dp); outln!(out, dp[q - 1]); } fn dfs(g: &LabeledGraph, dist: &mut [i64], u: usize, p: usize) { for &(v, c) in &g[u] { if v != p { dist[v] = dist[u] + c; dfs(g, dist, v, u); } } } pub struct Graph(LabeledGraph<()>); impl Graph { pub fn builder(n: usize) -> GraphBuilder { GraphBuilder(LabeledGraph::builder(n)) } pub fn len(&self) -> usize { self.0.len() } } impl std::ops::Index for Graph { type Output = [usize]; fn index(&self, u: usize) -> &Self::Output { unsafe { std::mem::transmute(self.0.index(u)) } } } pub struct GraphBuilder(LabeledGraphBuilder<()>); impl GraphBuilder { pub fn edge(&mut self, u: usize, v: usize) { self.0.edge(u, v, ()); } pub fn build(&mut self) -> Graph { Graph(self.0.build()) } } pub struct LabeledGraph { edges: Box<[(usize, T)]>, heads: Box<[usize]>, } impl LabeledGraph { pub fn builder(n: usize) -> LabeledGraphBuilder { LabeledGraphBuilder { nodes: Vec::new(), heads: vec![!0; n], } } pub fn len(&self) -> usize { self.heads.len() - 1 } } impl std::ops::Index for LabeledGraph { type Output = [(usize, T)]; fn index(&self, u: usize) -> &Self::Output { &self.edges[self.heads[u]..self.heads[u + 1]] } } pub struct LabeledGraphBuilder { nodes: Vec<((usize, T), usize)>, heads: Vec, } impl LabeledGraphBuilder { pub fn edge(&mut self, u: usize, v: usize, l: T) { self.nodes.push(((v, l), self.heads[u])); self.heads[u] = self.nodes.len() - 1; } pub fn build(&mut self) -> LabeledGraph { let mut edges = Vec::with_capacity(self.nodes.len()); let mut heads = Vec::with_capacity(self.heads.len() + 1); for &(mut h) in &self.heads { heads.push(edges.len()); while let Some((e, next)) = self.nodes.get(h) { edges.push(e.clone()); h = *next; } } heads.push(edges.len()); LabeledGraph { edges: edges.into(), heads: heads.into(), } } } #[derive(Debug)] pub struct Hld { head: Vec, par: Vec, tab: Vec, } pub type G = LabeledGraph; impl Hld { pub fn new(g: &G, root: usize) -> Self { let mut heavy = vec![!0; g.len()]; Self::dfs_heavy(g, &mut heavy, &mut vec![1; g.len()], root, !0); let mut hld = Hld { head: Vec::with_capacity(g.len()), par: Vec::with_capacity(g.len()), tab: vec![0; g.len()], }; hld.dfs_build(g, &heavy, root, !0, root); hld } fn dfs_heavy(g: &G, heavy: &mut [usize], size: &mut [usize], u: usize, p: usize) { let mut max = 0; for v in g[u].iter().map(|a| a.0).filter(|&v| v != p) { Self::dfs_heavy(g, heavy, size, v, u); if size[v] > max { max = size[v]; heavy[u] = v; } size[u] += size[v]; } } fn dfs_build(&mut self, g: &G, heavy: &[usize], u: usize, p: usize, h: usize) { self.tab[u] = self.head.len(); self.head.push(h); self.par.push(p); if heavy[u] == !0 { return; } self.dfs_build(g, heavy, heavy[u], u, h); for v in g[u].iter().map(|a| a.0).filter(|&v| v != p && v != heavy[u]) { self.dfs_build(g, heavy, v, u, v); } } pub fn lca(&self, mut u: usize, mut v: usize) -> usize { loop { if self.tab[u] > self.tab[v] { std::mem::swap(&mut u, &mut v); } if self.head[self.tab[u]] == self.head[self.tab[v]] { return u; } v = self.par[self.tab[self.head[self.tab[v]]]]; } } } // ----------------------------------------------------------------------------- fn main() -> io::Result<()> { std::thread::Builder::new() .stack_size(64 * 1024 * 1024) .spawn(|| { run( KInput::new(io::stdin().lock()), io::BufWriter::new(io::stdout().lock()), ) })? .join() .unwrap(); Ok(()) } // ----------------------------------------------------------------------------- pub mod kyoproio { use std::{ io::prelude::*, iter::FromIterator, marker::PhantomData, mem::{self, MaybeUninit}, ptr, slice, str, }; pub trait Input { fn bytes(&mut self) -> &[u8]; fn str(&mut self) -> &str { str::from_utf8(self.bytes()).unwrap() } fn input(&mut self) -> T { T::input(self) } fn iter(&mut self) -> Iter { Iter(self, PhantomData) } fn seq>(&mut self, n: usize) -> B { self.iter().take(n).collect() } } pub struct KInput { src: R, buf: Vec, pos: usize, len: usize, } impl KInput { pub fn new(src: R) -> Self { Self { src, buf: vec![0; 1 << 16], pos: 0, len: 0, } } fn read(&mut self) -> usize { if self.pos > 0 { self.buf.copy_within(self.pos..self.len, 0); self.len -= self.pos; self.pos = 0; } else if self.len >= self.buf.len() { self.buf.resize(2 * self.buf.len(), 0); } let read = self.src.read(&mut self.buf[self.len..]).unwrap(); self.len += read; read } } impl Input for KInput { fn bytes(&mut self) -> &[u8] { loop { while let Some(d) = self.buf[self.pos..self.len] .iter() .position(u8::is_ascii_whitespace) { let p = self.pos; self.pos += d + 1; if d > 0 { return &self.buf[p..p + d]; } } if self.read() == 0 { return &self.buf[mem::replace(&mut self.pos, self.len)..self.len]; } } } } pub struct Iter<'a, T, I: ?Sized>(&'a mut I, PhantomData<*const T>); impl<'a, T: InputItem, I: Input + ?Sized> Iterator for Iter<'a, T, I> { type Item = T; fn next(&mut self) -> Option { Some(self.0.input()) } fn size_hint(&self) -> (usize, Option) { (!0, None) } } pub trait InputItem: Sized { fn input(src: &mut I) -> Self; } impl InputItem for Vec { fn input(src: &mut I) -> Self { src.bytes().to_owned() } } macro_rules! from_str_impl { { $($T:ty)* } => { $(impl InputItem for $T { fn input(src: &mut I) -> Self { src.str().parse::<$T>().unwrap() } })* } } from_str_impl! { String char bool f32 f64 } macro_rules! parse_int_impl { { $($I:ty: $U:ty)* } => { $(impl InputItem for $I { fn input(src: &mut I) -> Self { let f = |s: &[u8]| s.iter().fold(0, |x, b| 10 * x + (b & 0xf) as $I); let s = src.bytes(); if let Some((&b'-', t)) = s.split_first() { -f(t) } else { f(s) } } } impl InputItem for $U { fn input(src: &mut I) -> Self { src.bytes().iter().fold(0, |x, b| 10 * x + (b & 0xf) as $U) } })* }; } parse_int_impl! { isize:usize i8:u8 i16:u16 i32:u32 i64:u64 i128:u128 } macro_rules! tuple_impl { ($H:ident $($T:ident)*) => { impl<$H: InputItem, $($T: InputItem),*> InputItem for ($H, $($T),*) { fn input(src: &mut I) -> Self { ($H::input(src), $($T::input(src)),*) } } tuple_impl!($($T)*); }; () => {} } tuple_impl!(A B C D E F G); macro_rules! array_impl { { $($N:literal)* } => { $(impl InputItem for [T; $N] { fn input(src: &mut I) -> Self { let mut arr = MaybeUninit::uninit(); let ptr = arr.as_mut_ptr() as *mut T; unsafe { for i in 0..$N { ptr.add(i).write(src.input()); } arr.assume_init() } } })* }; } array_impl! { 1 2 3 4 5 6 7 8 } pub trait Output: Write + Sized { fn bytes(&mut self, buf: &[u8]) { self.write_all(buf).unwrap(); } fn output(&mut self, x: T) { x.output(self); } fn byte(&mut self, b: u8) { self.bytes(slice::from_ref(&b)); } fn seq>(&mut self, iter: I, delim: u8) { let mut iter = iter.into_iter(); if let Some(x) = iter.next() { self.output(x); for x in iter { self.byte(delim); self.output(x); } } } fn flush_debug(&mut self) { if cfg!(debug_assertions) { self.flush().unwrap(); } } } impl Output for W {} pub trait OutputItem { fn output(self, dest: &mut O); } impl OutputItem for &str { fn output(self, dest: &mut O) { dest.bytes(self.as_bytes()); } } impl OutputItem for char { fn output(self, dest: &mut O) { self.encode_utf8(&mut [0u8; 4]).output(dest); } } impl OutputItem for () { fn output(self, _dest: &mut O) {} } macro_rules! output_int_impl { ($conv:ident; $U:ty; $($T:ty)*) => { $(impl OutputItem for $T { fn output(self, dest: &mut O) { let mut buf = MaybeUninit::<[u8; 20]>::uninit(); unsafe { let ptr = buf.as_mut_ptr() as *mut u8; let ofs = $conv(self as $U, ptr, 20); dest.bytes(slice::from_raw_parts(ptr.add(ofs), 20 - ofs)); } } } impl OutputItem for &$T { fn output(self, dest: &mut O) { (*self).output(dest); } })* }; } output_int_impl!(i64_to_bytes; i64; isize i8 i16 i32 i64); output_int_impl!(u64_to_bytes; u64; usize u8 u16 u32 u64); static DIGITS_LUT: &[u8; 200] = b"0001020304050607080910111213141516171819\ 2021222324252627282930313233343536373839\ 4041424344454647484950515253545556575859\ 6061626364656667686970717273747576777879\ 8081828384858687888990919293949596979899"; unsafe fn i64_to_bytes(x: i64, buf: *mut u8, len: usize) -> usize { let (neg, x) = if x < 0 { (true, -x) } else { (false, x) }; let mut i = u64_to_bytes(x as u64, buf, len); if neg { i -= 1; *buf.add(i) = b'-'; } i } unsafe fn u64_to_bytes(mut x: u64, buf: *mut u8, len: usize) -> usize { let lut = DIGITS_LUT.as_ptr(); let mut i = len; let mut two = |x| { i -= 2; ptr::copy_nonoverlapping(lut.add(2 * x), buf.add(i), 2); }; while x >= 10000 { let rem = (x % 10000) as usize; two(rem % 100); two(rem / 100); x /= 10000; } let mut x = x as usize; if x >= 100 { two(x % 100); x /= 100; } if x >= 10 { two(x); } else { i -= 1; *buf.add(i) = x as u8 + b'0'; } i } #[macro_export] macro_rules! out { ($out:expr, $arg:expr) => {{ $out.output($arg); }}; ($out:expr, $first:expr, $($rest:expr),*) => {{ $out.output($first); $out.byte(b' '); out!($out, $($rest),*); }} } #[macro_export] macro_rules! outln { ($out:expr) => {{ $out.byte(b'\n'); $out.flush_debug(); }}; ($out:expr, $($args:expr),*) => {{ out!($out, $($args),*); outln!($out); }} } #[macro_export] macro_rules! kdbg { ($($v:expr),*) => { if cfg!(debug_assertions) { dbg!($($v),*) } else { ($($v),*) } } } }