import sys input = sys.stdin.readline class FFT: @classmethod def _dft(cls, f, inv): from cmath import rect, pi n = len(f) if n == 1: return a = f[0::2] b = f[1::2] cls._dft(a, inv) cls._dft(b, inv) cur = 1 zeta = rect(1, inv * 2 * pi / n) for i in range(n): f[i] = a[i % (n // 2)] + cur * b[i % (n // 2)] cur *= zeta @classmethod def convolve(cls, f, g): n = 1 while n < len(f) + len(g): n *= 2 nf = [0] * n ng = [0] * n for i in range(len(f)): nf[i] = f[i] ng[i] = g[i] cls._dft(nf, 1) cls._dft(ng, 1) for i in range(n): nf[i] *= ng[i] cls._dft(nf, -1) ret = [0] * n for i in range(n): ret[i] = nf[i].real / n return ret N, Q = map(int, input().split()) a = list(map(int, input().split())) r = list(map(int, input().split())) x = [0] * N for i in r: x[-i] += 1 ans = FFT.convolve(a, x) ans = list(map(round, ans)) for i in range(N, len(ans)): ans[i % N] += ans[i] print(*ans[:N])