#二分探索 from operator import floordiv,truediv,truth,not_ from math import log ''' domain:= 定義域が整数(0)or実数(1) searchtype:= T→Fで最大値(0)かF→Tで最小値(1)か f:= boolを返す関数(単調性が必要)(答えでtrueを返すように) l,r:= 探索範囲(l,rはsearchtypeの条件を満たすように) eps:= 誤差(整数なら1,実数なら誤差指定による) args:= fの引数(iterable)…f(i,args)という形にして展開する必要がある ''' #答えはvalueに格納 class binary_search: def __init__(self,domain,searchtype,f,l,r,eps,args=None): self.domain=domain self.searchtype=searchtype self.f=f self.args=args self.l,self.r=l,r self.iter=int(log((r-l)/eps,2.0))+5 self.op1=[floordiv,truediv][domain] self.op2=[not_,truth][searchtype] self.value=self.calc() def calc(self): for _ in range(self.iter): diff=self.op1(self.r-self.l,2) bisection=self.l+diff if self.op2(self.f(bisection,self.args)): self.r=bisection else: self.l=bisection return [self.l,self.r][self.searchtype] n=int(input()) points=[list(map(int,input().split())) for i in range(n)] #長さi*10で成り立つ、F→Tで最小 dist=[[(points[i][0]-points[j][0])**2+(points[i][1]-points[j][1])**2 for j in range(n)] for i in range(n)] from collections import deque def f(e,args): dp=[False]*n dp[0]=True d=deque({0}) while len(d): p=d.popleft() for i in range(n): if not dp[i] and dist[p][i]<=(e*10)**2: d.append(i) dp[i]=True return dp[n-1] b=binary_search(0,1,f,0,10**10,1) print(b.value*10)