#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define endl codeforces #define ALL(v) std::begin(v), std::end(v) #define ALLR(v) std::rbegin(v), std::rend(v) using ll = std::int64_t; using ull = std::uint64_t; using pii = std::pair; using tii = std::tuple; using pll = std::pair; using tll = std::tuple; using size_type = ssize_t; template using vec = std::vector; template using vvec = vec>; template const T& var_min(const T &t) { return t; } template const T& var_max(const T &t) { return t; } template const T& var_min(const T &t, const Tail&... tail) { return std::min(t, var_min(tail...)); } template const T& var_max(const T &t, const Tail&... tail) { return std::max(t, var_max(tail...)); } template void chmin(T &t, const Tail&... tail) { t = var_min(t, tail...); } template void chmax(T &t, const Tail&... tail) { t = var_max(t, tail...); } template struct multi_dim_array { using type = std::array::type, Head>; }; template struct multi_dim_array { using type = std::array; }; template using mdarray = typename multi_dim_array::type; template void fill_seq(T &t, F f, Args... args) { if constexpr (std::is_invocable::value) { t = f(args...); } else { for (size_type i = 0; i < t.size(); i++) fill_seq(t[i], f, args..., i); } } template vec make_v(size_type sz) { return vec(sz); } template auto make_v(size_type hs, Tail&&... ts) { auto v = std::move(make_v(std::forward(ts)...)); return vec(hs, v); } namespace init__ { struct InitIO { InitIO() { std::cin.tie(nullptr); std::ios_base::sync_with_stdio(false); std::cout << std::fixed << std::setprecision(30); } } init_io; } template T ceil_pow2(T bound) { T ret = 1; while (ret < bound) ret *= 2; return ret; } template T ceil_div(T a, T b) { return a / b + !!(a % b); } namespace graph { using Node = ll; using Weight = ll; using Edge = std::pair; template struct Graph : public vvec { using vvec::vvec; void add_edge(Node f, Node t, Weight w = 1) { (*this)[f].emplace_back(t, w); if (!Directed) (*this)[t].emplace_back(f, w); } Graph build_inv() const { Graph ret(this->size()); for (Node i = 0; i < this->size(); i++) { for (const Edge &e : (*this)[i]) { Node j; Weight w; std::tie(j, w) = e; if (!Directed && j < i) continue; ret.add_edge(j, i, w); } } return ret; } }; template class dst_iterator { Iterator ite; public: dst_iterator(Iterator ite) : ite(ite) { } bool operator ==(const dst_iterator &oth) const { return ite == oth.ite; } bool operator !=(const dst_iterator &oth) const { return !(*this == oth); } bool operator <(const dst_iterator &oth) const { return ite < oth.ite; } bool operator >(const dst_iterator &oth) const { return ite > oth.ite; } bool operator <=(const dst_iterator &oth) const { return ite <= oth.ite; } bool operator >=(const dst_iterator &oth) const { return ite >= oth.ite; } const Node& operator *() { return ite->first; } const Node& operator *() const { return ite->first; } dst_iterator operator ++() { ++ite; return ite; } }; class dst_iteration { using ite_type = vec::const_iterator; const vec &edges; public: dst_iteration(const vec &edges) : edges(edges) { } auto begin() const { return dst_iterator(edges.cbegin()); } auto end() const { return dst_iterator(edges.cend()); } }; class dst_reverse_iteration { using ite_type = vec::const_reverse_iterator; const vec &edges; public: dst_reverse_iteration(const vec &edges) : edges(edges) { } auto begin() const { return dst_iterator(edges.crbegin()); } auto end() const { return dst_iterator(edges.crend()); } }; dst_iteration dst(const vec &edges) { return dst_iteration(edges); } dst_reverse_iteration rdst(const vec &edges) { return dst_reverse_iteration(edges); } } namespace tree { struct LCA { using node_type = int; const size_type sz; const node_type root; template LCA(const Graph &g, node_type root_arg) : sz(g.size()), root(root_arg), depth(sz), par(sz) { dfs(root, dummy, 0, g); std::fill(ALL(par[root]), dummy); for (int d = 0; d + 1 < log_sz; d++) for (int i = 0; i < sz; i++) { int p = par[i][d]; par[i][d + 1] = (p == dummy ? dummy : par[p][d]); } } int get_depth(node_type i) const { return depth[i]; } node_type operator()(node_type a, node_type b) const { if (depth[a] < depth[b]) std::swap(a, b); a = get_parent(a, depth[a] - depth[b]); if (a == b) return a; for (int d = log_sz - 1; 0 <= d; d--) { auto p1 = get_parent(a, d), p2 = get_parent(b, d); if (p1 != p2) { a = p1; b = p2; } } return par[a][0]; } private: static constexpr size_type log_sz = 30; static constexpr node_type dummy = -1; vec depth; vec> par; node_type get_parent(node_type a, int d) const { for (int i = 0; d; i++, d /= 2) { if (a == dummy) return dummy; if (d & 1) a = par[a][i]; } return a; } template void dfs(node_type cur, node_type pre, ll d, const Graph &g) { par[cur][0] = pre; depth[cur] = d; for (auto nxt : graph::dst(g[cur])) { if (nxt == pre) continue; dfs(nxt, cur, d + 1, g); } } }; } struct Solver { ll n, q, c; graph::Graph tree; vec xv; vvec dists, dp; const ll inf = 5e15; Solver(ll n, ll q, ll c) : n(n), q(q), c(c), tree(n), xv(q), dists(std::move(make_v(n, n))), dp(std::move(make_v(q, n))) { for (ll i = 1; i < n; i++) { ll u, v, l; std::cin >> u >> v >> l; tree.add_edge(u - 1, v - 1, l); } for (ll &e : xv) { std::cin >> e; e--; } fill_seq(dp, [&](ll i, ll j) { return (i == 0 && j == xv[0]) ? 0 : inf; }); calc_dists(); } void calc_dists() { fill_seq(dists, [&](ll i, ll j) { return i == j ? 0 : -1; }); { vec path = { pll(0, 0) }; dfs(0, path, 0); } tree::LCA lca(tree, 0); for (ll i = 0; i < n; i++) for (ll j = i + 1; j < n; j++) { if (dists[i][j] != -1) continue; ll p = lca(i, j); dists[i][j] = dists[j][i] = dists[p][i] + dists[p][j]; } } void dfs(ll cur, vec &path, ll sum) { for (auto [ p, d ] : path) dists[cur][p] = dists[p][cur] = sum + d; auto pre = path.back().first; path.emplace_back(cur, -sum); for (auto [ nxt, cost ] : tree[cur]) { if (nxt == pre) continue; dfs(nxt, path, sum + cost); } path.pop_back(); } void update(ll idx) { const ll src = xv[idx], dst = xv[idx + 1]; graph::Graph g(n + 1); for (ll i = 0; i < n; i++) { g.add_edge(n, i, dp[idx][i] + std::min(c, dists[src][i])); for (auto [ j, c ] : tree[i]) { g.add_edge(i, j, c); g.add_edge(j, i, c); } } vec dv(n + 1, inf); dv[n] = 0; std::priority_queue, std::greater> pq; pq.emplace(0, n); while (pq.size()) { auto [ d, cur ] = pq.top(); pq.pop(); if (dv[cur] < d) continue; for (auto [ nxt, cost ] : g[cur]) { ll nd = d + cost; if (dv[nxt] <= nd) continue; dv[nxt] = nd; pq.emplace(nd, nxt); } } // don't jump for (ll i = 0; i < n; i++) { chmin(dp[idx + 1][i], dp[idx][i] + dists[src][dst]); } // jump for (ll i = 0; i < n; i++) { chmin(dp[idx + 1][i], dv[i] + dists[i][dst]); } } ll solve() { for (ll i = 0; i + 1 < q; i++) update(i); return *std::min_element(ALL(dp[q - 1])); } }; int main() { ll n, q, c; std::cin >> n >> q >> c; Solver solver(n, q, c); std::cout << solver.solve() << "\n"; return 0; }