#include #include //#include using namespace std; using namespace atcoder; //using namespace boost::multiprecision; #define fs first #define sc second #define pb push_back #define mp make_pair #define eb emplace_back #define ALL(A) A.begin(),A.end() #define RALL(A) A.rbegin(),A.rend() typedef long long ll; typedef pair P; template inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; } template inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; } template T gcd(T a,T b){return b?gcd(b,a%b):a;} const ll mod=998244353; const ll LINF=1ll<<60; const int INF=1<<30; int dx[]={1,0,-1,0,1,-1,1,-1}; int dy[]={0,1,0,-1,1,-1,-1,1}; template struct FormalPowerSeries : vector { using vector::vector; using vector::operator=; using F = FormalPowerSeries; F operator-() const { F res(*this); for (auto &e : res) e = -e; return res; } F &operator*=(const T &g) { for (auto &e : *this) e *= g; return *this; } F &operator/=(const T &g) { assert(g != T(0)); *this *= g.inv(); return *this; } F &operator+=(const F &g) { int n = (*this).size(), m = g.size(); for (int i = 0; i < min(n, m); i++) (*this)[i] += g[i]; return *this; } F &operator-=(const F &g) { int n = (*this).size(), m = g.size(); for (int i = 0; i < min(n, m); i++) (*this)[i] -= g[i]; return *this; } F &operator<<=(const int d) { int n = (*this).size(); (*this).insert((*this).begin(), d, 0); (*this).resize(n); return *this; } F &operator>>=(const int d) { int n = (*this).size(); (*this).erase((*this).begin(), (*this).begin() + min(n, d)); (*this).resize(n); return *this; } F inv(int d = -1) const { int n = (*this).size(); assert(n != 0 && (*this)[0] != 0); if (d == -1) d = n; assert(d > 0); F res{(*this)[0].inv()}; while (res.size() < d) { int m = size(res); F f(begin(*this), begin(*this) + min(n, 2*m)); F r(res); f.resize(2*m), internal::butterfly(f); r.resize(2*m), internal::butterfly(r); for (int i = 0; i < 2 * m; i++) f[i] *= r[i]; internal::butterfly_inv(f); f.erase(f.begin(), f.begin() + m); f.resize(2*m), internal::butterfly(f); for (int i = 0; i < 2 * m; i++) f[i] *= r[i]; internal::butterfly_inv(f); T iz = T(2*m).inv(); iz *= -iz; for (int i = 0; i < m; i++) f[i] *= iz; res.insert(res.end(), f.begin(), f.begin() + m); } return {res.begin(), res.begin() + d}; } // // fast: FMT-friendly modulus only O((N+M)log(N+M)) // F &operator*=(const F &g) { // int n = (*this).size(); // *this = convolution(*this, g); // (*this).resize(n); // return *this; // } // F &operator/=(const F &g) { // int n = (*this).size(); // *this = convolution(*this, g.inv(n)); // (*this).resize(n); // return *this; // } // // naive O(NM) // F &operator*=(const F &g) { // int n = (*this).size(), m = g.size(); // for (int i = n-1; i >= 0; i--) { // (*this)[i] *= g[0]; // for (int j = 1; j < min(i + 1, m); j++) (*this)[i] += (*this)[i-j] * g[j]; // } // return *this; // } // F &operator/=(const F &g) { // assert(g[0] != T(0)); // T ig0 = g[0].inv(); // int n = (*this).size(), m = g.size(); // for (int i = n-1; i >= 0; i--) { // for (int j = 1; j < min(i + 1, m); j++) (*this)[i] -= (*this)[i-j] * g[j]; // (*this)[i] *= ig0; // } // return *this; // } // sparse O(NK) Kはgの非ゼロの係数の数 F &operator*=(vector> g) { int n = (*this).size(); auto [d, c] = g.front(); if (d == 0) g.erase(g.begin()); else c = 0; for (int i = n - 1; i >= 0; i--) { (*this)[i] *= c; for (auto &[j, b] : g) { if (j > i) break; (*this)[i] += (*this)[i-j] * b; } } return *this; } F &operator/=(vector> g) { int n = (*this).size(); auto [d, c] = g.front(); assert(d == 0 && c != T(0)); T ic = c.inv(); g.erase(g.begin()); for (int i = 0; i < n; i++) { for (auto &[j, b] : g) { if (j > i) break; (*this)[i] -= (*this)[i-j] * b; } (*this)[i] *= ic; } return *this; } // multiply and divide (1 + cz^d) void multiply(const int d, const T c) { int n = (*this).size(); if (c == T(1)) for (int i = n-d-1; i >= 0; i--) (*this)[i+d] += (*this)[i]; else if (c == T(-1)) for (int i = n-d-1; i >= 0; i--) (*this)[i+d] -= (*this)[i]; else for (int i = n-d-1; i >= 0; i--) (*this)[i+d] += (*this)[i] * c; } void divide(const int d, const T c) { int n = (*this).size(); if (c == T(1)) for (int i = 0; i < n-d; i++) (*this)[i+d] -= (*this)[i]; else if (c == T(-1)) for (int i = 0; i < n-d; i++) (*this)[i+d] += (*this)[i]; else for (int i = 0; i < n-d; i++) (*this)[i+d] -= (*this)[i] * c; } T eval(const T &a) const { T x(1), res(0); for (auto e : *this) res += e * x, x *= a; return res; } F operator*(const T &g) const { return F(*this) *= g; } F operator/(const T &g) const { return F(*this) /= g; } F operator+(const F &g) const { return F(*this) += g; } F operator-(const F &g) const { return F(*this) -= g; } F operator<<(const int d) const { return F(*this) <<= d; } F operator>>(const int d) const { return F(*this) >>= d; } F operator*(const F &g) const { return F(*this) *= g; } F operator/(const F &g) const { return F(*this) /= g; } F operator*(vector> g) const { return F(*this) *= g; } F operator/(vector> g) const { return F(*this) /= g; } }; using mint = modint998244353; using fps = FormalPowerSeries; using sfps = vector>; int main(){ int n,q;cin >> n >> q; vector a(n); for (int i = 0; i < n; i++) { cin >> a[i]; } for (int i = 0; i < q; i++) { int l, r, p;cin >> l >> r >> p; ll ans = 0; for (int k = l; k <= r; k++) { fps f = {1}; f.resize(n + 1); for (int j = 0; j < n; j++) { if(a[j] >= k) f *= sfps{{0, a[j] - 1}, {1, 1}}; else f *= sfps{{0, a[j]}}; } ans = (ans ^ f[p].val())%mod; } cout << ans << endl; } return 0; }