#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; using ll = long long; using P = pair; constexpr int INF = 1001001001; constexpr int mod = 1000000007; // constexpr int mod = 998244353; template inline bool chmax(T& x, T y){ if(x < y){ x = y; return true; } return false; } template inline bool chmin(T& x, T y){ if(x > y){ x = y; return true; } return false; } struct mint { int x; mint() : x(0) {} mint(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {} mint& operator+=(const mint& p){ if((x += p.x) >= mod) x -= mod; return *this; } mint& operator-=(const mint& p){ if((x -= p.x) < 0) x += mod; return *this; } mint& operator*=(const mint& p){ x = (int)(1LL * x * p.x % mod); return *this; } mint& operator/=(const mint& p){ *this *= p.inverse(); return *this; } mint operator-() const { return mint(-x); } mint operator+(const mint& p) const { return mint(*this) += p; } mint operator-(const mint& p) const { return mint(*this) -= p; } mint operator*(const mint& p) const { return mint(*this) *= p; } mint operator/(const mint& p) const { return mint(*this) /= p; } bool operator==(const mint& p) const { return x == p.x; } bool operator!=(const mint& p) const { return x != p.x; } mint pow(int64_t n) const { mint res = 1, mul = x; while(n > 0){ if(n & 1) res *= mul; mul *= mul; n >>= 1; } return res; } mint inverse() const { return pow(mod - 2); } friend ostream& operator<<(ostream& os, const mint& p){ return os << p.x; } friend istream& operator>>(istream& is, mint& p){ int64_t val; is >> val; p = mint(val); return is; } }; int main(){ ios::sync_with_stdio(false); cin.tie(nullptr); int N; cin >> N; vector A(N); for(int i = 0; i < N; ++i) cin >> A[i]; constexpr int bound = 1e+9; vector R(N); int l = 0, r = 0; ll prod = 1; while(r < N){ while(l < r && prod * A[r] >= bound){ R[l] = r; prod /= A[l++]; } prod *= A[r++]; } while(l < r) R[l++] = r; vector coeff_1(N + 1), coeff_0(N + 1); // L (= i) を固定したときの A[j] の寄与度は // (R - L) - (j - L) = -j + R // と j の 1 次関数で表せる。 // この係数を imos 法で求める。 // coeff_1 : 1 次の係数 // coeff_0 : 0 次の係数 for(int i = 0; i < N; ++i){ coeff_1[i] += -1, coeff_1[R[i]] -= -1; coeff_0[i] += R[i], coeff_0[R[i]] -= R[i]; } for(int i = 0; i < N; ++i){ coeff_1[i + 1] += coeff_1[i]; coeff_0[i + 1] += coeff_0[i]; } // W[i] : A[i] の寄与度 vector W(N + 1); for(int i = 0; i < N; ++i){ W[i] = coeff_1[i] * i + coeff_0[i]; } mint ans = 1; for(int i = 0; i < N; ++i){ ans *= mint(A[i]).pow(W[i]); } cout << ans << '\n'; return 0; }