#include #include #include #include #include #include #include #ifndef __GNUC__ #include #endif using namespace std; #if defined(_M_X64) || defined(__amd64__) #define FFT_64BIT #endif namespace uint_util { template struct Utils {}; #ifdef FFT_64BIT #if defined(_MSC_VER) && !defined(__clang__) #pragma section(".mycode", execute) __declspec(allocate(".mycode")) const unsigned char udiv128Data[] = {0x48, 0x89, 0xD0, 0x48, 0x89, 0xCA, 0x49, 0xF7, 0xF0, 0x49, 0x89, 0x11, 0xC3}; uint64_t(__fastcall *udiv128)(uint64_t numhi, uint64_t numlo, uint64_t den, uint64_t* rem) = (uint64_t(__fastcall *)(uint64_t, uint64_t, uint64_t, uint64_t*))(void*)(udiv128Data); #endif template<> struct Utils { #if defined(_MSC_VER) && !defined(__clang__) static void umul_full(uint64_t a, uint64_t b, uint64_t *lo, uint64_t *hi) { *lo = _umul128(a, b, hi); } static uint64_t umul_hi(uint64_t a, uint64_t b) { uint64_t hi; _umul128(a, b, &hi); return hi; } static uint64_t mulmod_invert(uint64_t b, uint64_t n) { uint64_t dummy; return udiv128(b, 0, n, &dummy); } #else static void umul_full(uint64_t a, uint64_t b, uint64_t *lo, uint64_t *hi) { const auto c = (unsigned __int128)a * b; *lo = (uint64_t)c; *hi = (uint64_t)(c >> 64); } static uint64_t umul_hi(uint64_t a, uint64_t b) { return (uint64_t)((unsigned __int128)a * b >> 64); } static uint64_t mulmod_invert(uint64_t b, uint64_t n) { uint64_t r; asm("div %3":"=a"(r):"a"(0),"d"(b),"r"(n)); return r; } #endif static uint64_t umul_lo(uint64_t a, uint64_t b) { return a * b; } static uint64_t mulmod_precalculated(uint64_t a, uint64_t b, uint64_t n, uint64_t bninv) { const auto q = umul_hi(a, bninv); uint64_t r = a * b - q * n; if(r >= n) r -= n; return r; } static uint64_t invert_twoadic(uint64_t x) { uint64_t i = x, p; do { p = i * x; i *= 2 - p; } while(p != 1); return i; } }; #endif template<> struct Utils { static void umul_full(uint32_t a, uint32_t b, uint32_t *lo, uint32_t *hi) { const uint64_t c = (uint64_t)a * b; *lo = (uint32_t)c; *hi = (uint32_t)(c >> 32); } static uint32_t umul_hi(uint32_t a, uint32_t b) { return (uint32_t)((uint64_t)a * b >> 32); } static uint32_t mulmod_invert(uint32_t b, uint32_t n) { return ((uint64_t)b << 32) / n; } static uint32_t umul_lo(uint32_t a, uint32_t b) { return a * b; } static uint32_t mulmod_precalculated(uint32_t a, uint32_t b, uint32_t n, uint32_t bninv) { const auto q = umul_hi(a, bninv); uint32_t r = a * b - q * n; if(r >= n) r -= n; return r; } static uint32_t invert_twoadic(uint32_t x) { uint32_t i = x, p; do { p = i * x; i *= 2 - p; } while(p != 1); return i; } }; } namespace modnum { template struct ModNumTypes { using Util = uint_util::Utils; template struct LazyModNum; //x < Lazy * P template struct LazyModNum { NumType x; LazyModNum() : x() {} template explicit LazyModNum(LazyModNum t) : x(t.x) { static_assert(L <= Lazy, "invalid conversion"); } static LazyModNum raw(NumType x) { LazyModNum r; r.x = x; return r; } template static LazyModNum *coerceArray(LazyModNum *a) { return reinterpret_cast(a); } bool operator==(LazyModNum that) const { static_assert(Lazy == 1, "cannot compare"); return x == that.x; } }; typedef LazyModNum<1> ModNum; class ModInfo { public: enum { MAX_ROOT_ORDER = 23 }; private: NumType P, P2; ModNum _one; NumType _twoadic_inverse; NumType _order; NumType _one_P_inv; //floor(W * (W rem P) / P) bool _support_fft; ModNum _roots[MAX_ROOT_ORDER + 1], _inv_roots[MAX_ROOT_ORDER + 1]; ModNum _inv_two_powers[MAX_ROOT_ORDER + 1]; public: NumType getP() const { return P; } ModNum one() const { return _one; } ModNum to_alt(NumType x) const { return ModNum::raw(Util::mulmod_precalculated(x, _one.x, P, _one_P_inv)); } NumType from_alt(ModNum x) const { return _reduce(x.x, 0); } bool support_fft() const { return _support_fft; } ModNum root(int n) const { assert(support_fft()); if(n > 0) { assert(n <= MAX_ROOT_ORDER); return _roots[n]; } else if(n < 0) { assert(n >= -MAX_ROOT_ORDER); return _inv_roots[-n]; } else { return one(); } } ModNum inv_two_power(int n) const { assert(support_fft()); assert(0 <= n && n <= MAX_ROOT_ORDER); return _inv_two_powers[n]; } ModNum add(ModNum a, ModNum b) const { auto c = a.x + b.x; if(c >= P) c -= P; return ModNum::raw(c); } ModNum sub(ModNum a, ModNum b) const { auto c = a.x + (P - b.x); if(c >= P) c -= P; return ModNum::raw(c); } LazyModNum<4> add_lazy(LazyModNum<2> a, LazyModNum<2> b) const { return LazyModNum<4>::raw(a.x + b.x); } LazyModNum<4> sub_lazy(LazyModNum<2> a, LazyModNum<2> b) const { return LazyModNum<4>::raw(a.x + (P2 - b.x)); } ModNum mul(ModNum a, ModNum b) const { NumType lo, hi; Util::umul_full(a.x, b.x, &lo, &hi); return ModNum::raw(_reduce(lo, hi)); } ModNum sqr(ModNum a) const { return mul(a, a); } template LazyModNum<2> mul_lazy(LazyModNum a, LazyModNum b) const { static_assert(LA + LB <= 5, "too lazy"); NumType lo, hi; Util::umul_full(a.x, b.x, &lo, &hi); return LazyModNum<2>::raw(_reduce_lazy(lo, hi)); } ModNum pow(ModNum a, NumType k) const { LazyModNum<2> base{a}, res{one()}; while(1) { if(k & 1) res = mul_lazy(res, base); if(k >>= 1) base = mul_lazy(base, base); else break; } return lazy_reduce_1(res); } ModNum inverse(ModNum a) const { return pow(a, _order - 1); } //a < 2P, res < P ModNum lazy_reduce_1(LazyModNum<2> a) const { NumType x = a.x; if(x >= P) x -= P; return ModNum::raw(x); } //a < 4P, res < 2P LazyModNum<2> lazy_reduce_2(LazyModNum<4> a) const { NumType x = a.x; if(x >= P2) x -= P2; return LazyModNum<2>::raw(x); } private: NumType _reduce(NumType lo, NumType hi) const { const auto q = Util::umul_lo(lo, _twoadic_inverse); const auto h = Util::umul_hi(q, P); NumType t = hi + P - h; if(t >= P) t -= P; return t; } NumType _reduce_lazy(NumType lo, NumType hi) const { const auto q = Util::umul_lo(lo, _twoadic_inverse); const auto h = Util::umul_hi(q, P); return hi + P - h; } public: static ModInfo make(NumType P, NumType order = NumType(-1)) { ModInfo res; res.P = P; res.P2 = P * 2; res._one.x = -Util::umul_lo(Util::mulmod_invert(1, P), P); res._order = order == NumType(-1) ? P - 1 : order; res._twoadic_inverse = Util::invert_twoadic(P); res._one_P_inv = Util::mulmod_invert(res._one.x, P); res._support_fft = false; assert(res.mul(res.one(), res.one()) == res.one()); return res; } static ModInfo make_support_fft(NumType P, NumType order, NumType original_root, int valuation) { ModInfo res = make(P, order); _compute_fft_info(res, original_root, valuation); return res; } private: static void _compute_fft_info(ModInfo &res, NumType original_root, int valuation) { assert(res.P <= 1ULL << (sizeof(NumType) * 8 - 2)); assert(valuation >= MAX_ROOT_ORDER); res._support_fft = true; ModNum max_root = res.to_alt(original_root); for(int i = valuation; i > MAX_ROOT_ORDER; -- i) max_root = res.sqr(max_root); res._roots[MAX_ROOT_ORDER] = max_root; for(int i = MAX_ROOT_ORDER - 1; i >= 0; -- i) res._roots[i] = res.sqr(res._roots[i + 1]); res._inv_roots[MAX_ROOT_ORDER] = res.inverse(max_root); for(int i = MAX_ROOT_ORDER - 1; i >= 0; -- i) res._inv_roots[i] = res.sqr(res._inv_roots[i + 1]); res._inv_two_powers[0] = res.one(); res._inv_two_powers[1] = res.inverse(res.add(res.one(), res.one())); for(int i = 1; i < MAX_ROOT_ORDER; ++ i) res._inv_two_powers[i] = res.mul(res._inv_two_powers[1], res._inv_two_powers[i - 1]); assert(res.mul(res._roots[1], res._inv_roots[1]) == res.one()); assert(res.root(0) == res.one()); assert(!(res.root(1) == res.one())); } }; }; } namespace fft { using namespace modnum; #ifdef FFT_64BIT using NumType = uint64_t; #else using NumType = uint32_t; #endif using ModNumType = ModNumTypes; template using LazyModNum = ModNumType::LazyModNum; using ModNum = ModNumType::ModNum; using ModInfo = ModNumType::ModInfo; using ModNumType32 = ModNumTypes; using ModNum32 = ModNumType32::ModNum; using ModInfo32 = ModNumType32::ModInfo; //f[i] < 2P void ntt_dit_lazy_core(LazyModNum<2> *f_inout, int n, int sign, const ModInfo &mod) { LazyModNum<4> * const f = LazyModNum<4>::coerceArray(f_inout); int N = 1 << n; if(n & 1) { for(int i = 0; i < N; i += 2) { const auto a = f_inout[i + 0]; const auto b = f_inout[i + 1]; f[i + 0] = mod.add_lazy(a, b); f[i + 1] = mod.sub_lazy(a, b); } } if(n <= 1) { if(n & 1) { for(int i = 0; i < N; ++ i) f_inout[i] = mod.lazy_reduce_2(f[i]); } return; } const auto imag = mod.root(2 * sign); for(int m = 2 + (n & 1); m <= n; m += 2) { int M = 1 << m, M_4 = M >> 2; const auto omega = mod.root(m * sign); ModNum w = mod.one(), w2 = w, w3 = w; for(int j = 0; j < M_4; ++ j) { for(int i = j; i < N; i += M) { const auto a0 = mod.lazy_reduce_2(f[i + M_4 * 0]); const auto a2 = mod.mul_lazy(f[i + M_4 * 1], w2); const auto a1 = mod.mul_lazy(f[i + M_4 * 2], w); const auto a3 = mod.mul_lazy(f[i + M_4 * 3], w3); const auto t02 = mod.lazy_reduce_2(mod.add_lazy(a0, a2)); const auto t13 = mod.lazy_reduce_2(mod.add_lazy(a1, a3)); f[i + M_4 * 0] = mod.add_lazy(t02, t13); f[i + M_4 * 2] = mod.sub_lazy(t02, t13); const auto u02 = mod.lazy_reduce_2(mod.sub_lazy(a0, a2)); const auto u13 = mod.mul_lazy(mod.sub_lazy(a1, a3), imag); f[i + M_4 * 1] = mod.add_lazy(u02, u13); f[i + M_4 * 3] = mod.sub_lazy(u02, u13); } w = mod.mul(w, omega); w2 = mod.mul(w, w); w3 = mod.mul(w2, w); } } for(int i = 0; i < N; ++ i) f_inout[i] = mod.lazy_reduce_2(f[i]); } template void bit_reverse_permute(T *f, int n) { int N = 1 << n, N_2 = N >> 1, r = 0; for(int x = 1; x < N; ++ x) { int h = N_2; while(((r ^= h) & h) == 0) h >>= 1; if(r > x) swap(f[x], f[r]); } } void ntt_dit_lazy(LazyModNum<2> *f, int n, int sign, const ModInfo &mod) { bit_reverse_permute(f, n); ntt_dit_lazy_core(f, n, sign, mod); } template void componentwise_product_lazy(LazyModNum<2> *res, const LazyModNum *f, const LazyModNum *g, int N, const ModInfo &mod) { for(int i = 0; i < N; ++ i) res[i] = mod.mul_lazy(f[i], g[i]); } void normalize_and_lazy_reduce(LazyModNum<2> *f, int n, const ModInfo &mod) { const auto f_out = ModNum::coerceArray(f); int N = 1 << n; ModNum inv = mod.inv_two_power(n); assert(mod.mul(inv, mod.to_alt(N)) == mod.one()); for(int i = 0; i < N; ++ i) f_out[i] = mod.lazy_reduce_1(mod.mul_lazy(f[i], inv)); } void convolute(ModNum *f_in, ModNum *g_in, int n, const ModInfo &mod) { assert(mod.support_fft()); const auto f = LazyModNum<2>::coerceArray(f_in); const auto g = LazyModNum<2>::coerceArray(g_in); ntt_dit_lazy(f, n, +1, mod); ntt_dit_lazy(g, n, +1, mod); componentwise_product_lazy(f, f, g, 1 << n, mod); ntt_dit_lazy(f, n, -1, mod); normalize_and_lazy_reduce(f, n, mod); } void auto_convolute(ModNum *f_in, int n, const ModInfo &mod) { assert(mod.support_fft()); const auto f = LazyModNum<2>::coerceArray(f_in); ntt_dit_lazy(f, n, +1, mod); componentwise_product_lazy(f, f, f, 1 << n, mod); ntt_dit_lazy(f, n, -1, mod); normalize_and_lazy_reduce(f, n, mod); } #ifdef FFT_64BIT enum { MULTIPRIME_NUM = 2 }; void multiprime_decompose(ModNum *res[MULTIPRIME_NUM], const ModNum32 *f, int N, const ModInfo32 &f_mod, const ModInfo * const mods[MULTIPRIME_NUM]) { for(int i = 0; i < N; ++ i) { const auto a = f_mod.from_alt(f[i]); for(int k = 0; k < MULTIPRIME_NUM; ++ k) res[k][i] = mods[k]->to_alt(a); } } void multiprime_compose(ModNum32 *res, const ModInfo32 &mod_res, const ModNum *f[MULTIPRIME_NUM], int N, const ModInfo * const mods[MULTIPRIME_NUM]) { const auto f0 = f[0], f1 = f[1]; const auto &mod0 = *mods[0], &mod1 = *mods[1]; const auto P0 = mod0.getP(), P1 = mod1.getP(); const auto P_res = mod_res.getP(); const auto t = mod1.inverse(mod1.to_alt(P0)); const auto p = mod_res.to_alt(P0 % P_res); for(int i = 0; i < N; ++ i) { const auto a0 = mod0.from_alt(f0[i]), a1 = mod1.from_alt(f1[i]); const auto d = mod1.sub(mod1.to_alt(a1), mod1.to_alt(a0)); const auto h = mod1.from_alt(mod1.mul(d, t)); res[i] = mod_res.add(mod_res.to_alt(a0 % P_res), mod_res.mul(mod_res.to_alt(h % P_res), p)); } } static const ModInfo fft_prime_mod0 = ModInfo::make_support_fft(0x3f91300000000001ULL, -1, 0x1941B388165C78EBULL, 44); static const ModInfo fft_prime_mod1 = ModInfo::make_support_fft(0x3f93300000000001ULL, -1, 0x394ba9c52fec1825ULL, 44); const ModInfo * const fft_prime_mods[MULTIPRIME_NUM] = { &fft_prime_mod0, &fft_prime_mod1 }; void multiprime_convolute(ModNum32 *res, int resN, const ModNum32 *f, int fN, const ModNum32 *g, int gN, int n, const ModInfo32 &mod) { int N = 1 << n; assert(fN <= N && gN <= N && resN <= N); //implicit zero-fill unique_ptr workspace(new ModNum[N * 4]); ModNum *fs[MULTIPRIME_NUM] = { workspace.get() + N * 0, workspace.get() + N * 2 }; ModNum *gs[MULTIPRIME_NUM] = { workspace.get() + N * 1, workspace.get() + N * 3 }; multiprime_decompose(fs, f, fN, mod, fft_prime_mods); multiprime_decompose(gs, g, gN, mod, fft_prime_mods); for(int k = 0; k < MULTIPRIME_NUM; ++ k) convolute(fs[k], gs[k], n, *fft_prime_mods[k]); multiprime_compose(res, mod, const_cast(fs), resN, fft_prime_mods); } void multiprime_auto_convolute(ModNum32 *res, int resN, const ModNum32 *f, int fN, int n, const ModInfo32 &mod) { int N = 1 << n; assert(fN <= N && resN <= N); unique_ptr workspace(new ModNum[N * 2]); ModNum *fs[MULTIPRIME_NUM] = { workspace.get() + N * 0, workspace.get() + N * 1 }; multiprime_decompose(fs, f, fN, mod, fft_prime_mods); for(int k = 0; k < MULTIPRIME_NUM; ++ k) auto_convolute(fs[k], n, *fft_prime_mods[k]); multiprime_compose(res, mod, const_cast(fs), resN, fft_prime_mods); } #else #error unimplemented #endif } struct ModInt { using NumType = uint32_t; using ModNumType = modnum::ModNumTypes; using ModNum = ModNumType::ModNum; using ModInfo = ModNumType::ModInfo; public: ModNum x; ModInt() : x() {} explicit ModInt(NumType num) : x(mod.to_alt(num)) {} NumType get() const { return mod.from_alt(x); } static ModInt raw(ModNum x) { ModInt r; r.x = x; return r; } static ModInt one() { return raw(mod.one()); } ModInt operator+(ModInt that) const { return raw(mod.add(x, that.x)); } ModInt &operator+=(ModInt that) { return *this = *this + that; } ModInt operator-(ModInt that) const { return raw(mod.sub(x, that.x)); } ModInt &operator-=(ModInt that) { return *this = *this - that; } ModInt operator-() const { return raw(mod.sub(ModNum(), x)); } ModInt operator*(ModInt that) const { return raw(mod.mul(x, that.x)); } ModInt &operator*=(ModInt that) { return *this = *this * that; } ModInt inverse() const { return raw(mod.inverse(x)); } ModInt operator/(ModInt that) const { return *this * that.inverse(); } ModInt &operator/=(ModInt that) { return *this = *this / that.inverse(); } bool operator==(ModInt that) const { return x == that.x; } bool operator!=(ModInt that) const { return !(*this == that); } private: static ModInfo mod; public: static const ModInfo &get_mod_info() { return mod; } static void set_mod(NumType P, NumType order = -1) { mod = ModInfo::make(P, order); } }; ModInt::ModInfo ModInt::mod; typedef ModInt mint; namespace mod_polynomial { struct Polynomial { typedef mint R; static R ZeroR() { return R(); } static R OneR() { return R::one(); } static bool IsZeroR(R r) { return r == ZeroR(); } std::vector coefs; Polynomial() {} explicit Polynomial(R c0) : coefs(1, c0) {} explicit Polynomial(R c0, R c1) : coefs(2) { coefs[0] = c0, coefs[1] = c1; } template Polynomial(It be, It en) : coefs(be, en) {} static Polynomial Zero() { return Polynomial(); } static Polynomial One() { return Polynomial(OneR()); } static Polynomial X() { return Polynomial(ZeroR(), OneR()); } void resize(int n) { coefs.resize(n); } void clear() { coefs.clear(); } R *data() { return coefs.empty() ? NULL : &coefs[0]; } const R *data() const { return coefs.empty() ? NULL : &coefs[0]; } int size() const { return static_cast(coefs.size()); } bool empty() const { return coefs.empty(); } int degree() const { return size() - 1; } bool normalized() const { return coefs.empty() || coefs.back() != ZeroR(); } bool monic() const { return !coefs.empty() && coefs.back() == OneR(); } R get(int i) const { return 0 <= i && i < size() ? coefs[i] : ZeroR(); } void set(int i, R x) { if(size() <= i) resize(i + 1); coefs[i] = x; } void normalize() { while(!empty() && IsZeroR(coefs.back())) coefs.pop_back(); } R evaluate(R x) const { if(empty()) return R(); R r = coefs.back(); for(int i = size() - 2; i >= 0; -- i) { r *= x; r += coefs[i]; } return r; } Polynomial &operator+=(const Polynomial &that) { int m = size(), n = that.size(); if(m < n) resize(n); _add(data(), that.data(), n); return *this; } Polynomial operator+(const Polynomial &that) const { return Polynomial(*this) += that; } Polynomial &operator-=(const Polynomial &that) { int m = size(), n = that.size(); if(m < n) resize(n); _subtract(data(), that.data(), n); return *this; } Polynomial operator-(const Polynomial &that) const { return Polynomial(*this) -= that; } Polynomial &operator*=(R r) { _multiply_1(data(), size(), r); return *this; } Polynomial operator*(R r) const { Polynomial res; res.resize(size()); _multiply_1(res.data(), data(), size(), r); return res; } Polynomial operator*(const Polynomial &that) const { Polynomial r; multiply(r, *this, that); return r; } Polynomial &operator*=(const Polynomial &that) { multiply(*this, *this, that); return *this; } static void multiply(Polynomial &res, const Polynomial &p, const Polynomial &q) { int pn = p.size(), qn = q.size(); if(pn < qn) return multiply(res, q, p); if(&res == &p || &res == &q) { Polynomial tmp; multiply(tmp, p, q); res = tmp; return; } if(qn == 0) { res.coefs.clear(); } else { res.resize(pn + qn - 1); _multiply_select_method(res.data(), p.data(), pn, q.data(), qn); } } Polynomial operator-() const { Polynomial res; res.resize(size()); _negate(res.data(), data(), size()); return res; } Polynomial precomputeInverse(int n) const { Polynomial res; res.resize(n); _precompute_inverse(res.data(), n, data(), size()); return res; } static void divideRemainderPrecomputedInverse(Polynomial ", Polynomial &rem, const Polynomial &p, const Polynomial &q, const Polynomial &inv) { assert(" != &p && " != &q && " != &inv); int pn = p.size(), qn = q.size(); assert(inv.size() >= pn - qn + 1); quot.resize(std::max(0, pn - qn + 1)); rem.resize(qn - 1); _divide_remainder_precomputed_inverse(quot.data(), rem.data(), p.data(), pn, q.data(), qn, inv.data()); quot.normalize(); rem.normalize(); } Polynomial computeRemainderPrecomputedInverse(const Polynomial &q, const Polynomial &inv) const { Polynomial quot, rem; divideRemainderPrecomputedInverse(quot, rem, *this, q, inv); return rem; } Polynomial powerMod(long long K, const Polynomial &q) const { int qn = q.size(); assert(K >= 0 && qn > 0); assert(q.monic()); if(qn == 1) return Polynomial(); if(K == 0) return One(); Polynomial inv = q.precomputeInverse(std::max(size() - qn + 1, qn)); Polynomial p = this->computeRemainderPrecomputedInverse(q, inv); int l = 0; while((K >> l) > 1) ++ l; Polynomial res = p; for(-- l; l >= 0; -- l) { res *= res; res = res.computeRemainderPrecomputedInverse(q, inv); if(K >> l & 1) { res *= p; res = res.computeRemainderPrecomputedInverse(q, inv); } } return res; } static int MULTIPRIME_FFT_THRESHOLD; private: class WorkSpaceStack; static void _fill_zero(R *res, int n); static void _copy(R *res, const R *p, int n); static void _negate(R *res, const R *p, int n); static void _add(R *p, const R *q, int n); static void _add(R *res, const R *p, int pn, const R *q, int qn); static void _subtract(R *p, const R *q, int n); static void _subtract(R *res, const R *p, int pn, const R *q, int qn); static void _multiply_select_method(R *res, const R *p, int pn, const R *q, int qn); static void _square_select_method(R *res, const R *p, int pn); static void _multiply_1(R *p, const R *q, int n, R c0); static void _multiply_1(R *p, int n, R c0); static void _multiply_power_of_two(R *res, const R *p, int n, int k); static void _divide_power_of_two(R *res, const R *p, int n, int k); static void _schoolbook_multiplication(R *res, const R *p, int pn, const R *q, int qn); static void _multiprime_fft(R *res, const R *p, int pn, const R *q, int qn); static void _reverse(R *res, const R *p, int pn); static void _inverse_power_series(R *res, int resn, const R *p, int pn); static void _precompute_inverse(R *res, int resn, const R *p, int pn); static void _divide_precomputed_inverse(R *res, int resn, const R *revp, int pn, const R *inv); static void _divide_remainder_precomputed_inverse(R *quot, R *rem, const R *p, int pn, const R *q, int qn, const R *inv); }; int Polynomial::MULTIPRIME_FFT_THRESHOLD = 16; void Polynomial::_fill_zero(R *res, int n) { for(int i = 0; i < n; ++ i) res[i] = ZeroR(); } void Polynomial::_copy(R *res, const R *p, int n) { for(int i = 0; i < n; ++ i) res[i] = p[i]; } void Polynomial::_negate(R *res, const R *p, int n) { for(int i = 0; i < n; ++ i) res[i] = -p[i]; } void Polynomial::_add(R *res, const R *p, int pn, const R *q, int qn) { for(int i = 0; i < qn; ++ i) res[i] = p[i] + q[i]; _copy(res + qn, p + qn, pn - qn); } void Polynomial::_subtract(R *res, const R *p, int pn, const R *q, int qn) { for(int i = 0; i < qn; ++ i) res[i] = p[i] - q[i]; _copy(res + qn, p + qn, pn - qn); } void Polynomial::_add(R *p, const R *q, int n) { _add(p, p, n, q, n); } void Polynomial::_subtract(R *p, const R *q, int n) { _subtract(p, p, n, q, n); } void Polynomial::_multiply_1(R *res, const R *p, int n, R c0) { for(int i = 0; i < n; ++ i) res[i] = p[i] * c0; } void Polynomial::_multiply_1(R *p, int n, R c0) { _multiply_1(p, p, n, c0); } void Polynomial::_multiply_power_of_two(R *res, const R *p, int n, int k) { assert(0 < k && k < 31); R mul = R(1 << k); _multiply_1(res, p, n, mul); } void Polynomial::_divide_power_of_two(R *res, const R *p, int n, int k) { assert(0 < k && k < 31); static const R Inv2 = R(2).inverse(); R inv = k == 1 ? Inv2 : R(1 << k).inverse(); _multiply_1(res, p, n, inv); } void Polynomial::_multiply_select_method(R *res, const R *p, int pn, const R *q, int qn) { if(pn < qn) std::swap(p, q), std::swap(pn, qn); assert(res != p && res != q && pn >= qn && qn > 0); int rn = pn + qn - 1; if(qn == 1) { _multiply_1(res, p, pn, q[0]); } else if(qn < MULTIPRIME_FFT_THRESHOLD) { _schoolbook_multiplication(res, p, pn, q, qn); } else { _multiprime_fft(res, p, pn, q, qn); } } void Polynomial::_square_select_method(R *res, const R *p, int pn) { _multiply_select_method(res, p, pn, p, pn); } void Polynomial::_schoolbook_multiplication(R *res, const R *p, int pn, const R *q, int qn) { if(qn == 1) { _multiply_1(res, p, pn, q[0]); return; } assert(res != p && res != q && pn >= qn && qn > 0); _fill_zero(res, pn + qn - 1); for(int i = 0; i < pn; ++ i) for(int j = 0; j < qn; ++ j) res[i + j] += p[i] * q[j]; } void Polynomial::_multiprime_fft(R *res, const R *p, int pn, const R *q, int qn) { int resn = pn + qn - 1; int n = 0; while((1 << n) < resn) ++ n; if(p == q) { assert(pn == qn); fft::multiprime_auto_convolute(reinterpret_cast(res), resn, reinterpret_cast(p), pn, n, mint::get_mod_info()); } else { fft::multiprime_convolute(reinterpret_cast(res), resn, reinterpret_cast(p), pn, reinterpret_cast(q), qn, n, mint::get_mod_info()); } } void Polynomial::_reverse(R *res, const R *p, int pn) { if(res == p) { std::reverse(res, res + pn); } else { for(int i = 0; i < pn; ++ i) res[pn - 1 - i] = p[i]; } } void Polynomial::_inverse_power_series(R *res, int resn, const R *p, int pn) { if(resn == 0) return; assert(res != p); assert(p[0] == OneR()); unique_ptr ws(new R[resn * 4]); R *tmp1 = ws.get(), *tmp2 = tmp1 + resn * 2; _fill_zero(res, resn); res[0] = p[0]; int curn = 1; while(curn < resn) { int nextn = std::min(resn, curn * 2); _square_select_method(tmp1, res, curn); _multiply_select_method(tmp2, tmp1, std::min(nextn, curn * 2 - 1), p, std::min(nextn, pn)); _multiply_power_of_two(res, res, curn, 1); _subtract(res, tmp2, nextn); curn = nextn; } } void Polynomial::_precompute_inverse(R *res, int resn, const R *p, int pn) { unique_ptr ws(new R[pn]); R *tmp = ws.get(); _reverse(tmp, p, pn); _inverse_power_series(res, resn, tmp, pn); } void Polynomial::_divide_precomputed_inverse(R *res, int resn, const R *revp, int pn, const R *inv) { unique_ptr ws(new R[pn + resn]); R *tmp = ws.get(); _multiply_select_method(tmp, revp, pn, inv, resn); _reverse(res, tmp, resn); } void Polynomial::_divide_remainder_precomputed_inverse(R *quot, R *rem, const R *p, int pn, const R *q, int qn, const R *inv) { if(pn < qn) { _copy(rem, p, pn); _fill_zero(rem + pn, qn - 1 - pn); return; } assert(qn > 0); assert(q[qn - 1] == OneR()); if(qn == 1) return; int quotn = pn - qn + 1; int rn = qn - 1, tn = std::min(quotn, rn), un = tn + rn; unique_ptr ws(new R[pn + un + (quot != NULL ? 0 : quotn)]); R *revp = ws.get(), *quotmul = revp + pn; if(quot == NULL) quot = quotmul + un; _reverse(revp, p, pn); _divide_precomputed_inverse(quot, quotn, revp, pn, inv); _multiply_select_method(quotmul, q, rn, quot, tn); _subtract(rem, p, rn, quotmul, rn); } } vector doDP(const int a[6], int n) { int maxX = a[5] * n; vector > dp(n+1, vector(maxX+1)); dp[0][0] = mint(1); int z = a[0]; for(int k = 0; k < 6; ++ k) { int d = a[k]; for(int t = 0; t < n; ++ t) { for(int i = t * z; i <= t * d; ++ i) { mint x = dp[t][i]; if(x.x.x != 0) dp[t + 1][i + d] += x; } } } return dp[n]; } //a_{i+n} = \sum_{j=0}^{n-1} c[j] a_{i+j} vector computeLinearRecurrentSequenceCoefficients(const vector &c, long long N) { using namespace mod_polynomial; int n = (int)c.size(); Polynomial poly; poly.resize(n+1); for(int i = 0; i < n; ++ i) poly.set(i, -c[i]); poly.set(n, mint(1)); Polynomial resp = Polynomial::X().powerMod(N, poly); vector res(n); for(int i = 0; i < n; ++ i) res[i] = resp.get(i); return res; } int main() { mint::set_mod(1000000007); long long N; int P; int C; while(cin >> N >> P >> C) { const int primes[6] = { 2, 3, 5, 7, 11, 13 }; const int composites[6] = { 4, 6, 8, 9, 10, 12 }; vector cntP, cntC; cntP = doDP(primes, P); cntC = doDP(composites, C); int X = P * primes[5] + C * composites[5]; vector ways(X+1); { using mod_polynomial::Polynomial; Polynomial p(cntP.begin(), cntP.end()); Polynomial c(cntC.begin(), cntC.end()); Polynomial pc = p * c; for(int i = 0; i <= X; ++ i) ways[i] = pc.get(i); } vector c(X); for(int i = 0; i < X; ++ i) c[i] = ways[X - i]; vector coeffs; coeffs = computeLinearRecurrentSequenceCoefficients(c, X + (N - 1)); mint ans = accumulate(coeffs.begin(), coeffs.end(), mint()); printf("%d\n", (int)ans.get()); } return 0; }