/** * date : 2020-12-17 00:44:04 */ #define NDEBUG using namespace std; // intrinstic #include <immintrin.h> #include <algorithm> #include <array> #include <bitset> #include <cassert> #include <cctype> #include <cfenv> #include <cfloat> #include <chrono> #include <cinttypes> #include <climits> #include <cmath> #include <complex> #include <csetjmp> #include <csignal> #include <cstdarg> #include <cstddef> #include <cstdint> #include <cstdio> #include <cstdlib> #include <cstring> #include <ctime> #include <deque> #include <exception> #include <forward_list> #include <fstream> #include <functional> #include <initializer_list> #include <iomanip> #include <ios> #include <iosfwd> #include <iostream> #include <istream> #include <iterator> #include <limits> #include <list> #include <locale> #include <map> #include <memory> #include <new> #include <numeric> #include <ostream> #include <queue> #include <random> #include <ratio> #include <regex> #include <set> #include <sstream> #include <stack> #include <stdexcept> #include <streambuf> #include <string> #include <system_error> #include <tuple> #include <type_traits> #include <typeinfo> #include <unordered_map> #include <unordered_set> #include <utility> #include <valarray> #include <vector> // utility namespace Nyaan { using ll = long long; using i64 = long long; using u64 = unsigned long long; using i128 = __int128_t; using u128 = __uint128_t; template <typename T> using V = vector<T>; template <typename T> using VV = vector<vector<T>>; using vi = vector<int>; using vl = vector<long long>; using vd = V<double>; using vs = V<string>; using vvi = vector<vector<int>>; using vvl = vector<vector<long long>>; template <typename T, typename U> struct P : pair<T, U> { template <typename... Args> P(Args... args) : pair<T, U>(args...) {} using pair<T, U>::first; using pair<T, U>::second; T &x() { return first; } const T &x() const { return first; } U &y() { return second; } const U &y() const { return second; } P &operator+=(const P &r) { first += r.first; second += r.second; return *this; } P &operator-=(const P &r) { first -= r.first; second -= r.second; return *this; } P &operator*=(const P &r) { first *= r.first; second *= r.second; return *this; } P operator+(const P &r) const { return P(*this) += r; } P operator-(const P &r) const { return P(*this) -= r; } P operator*(const P &r) const { return P(*this) *= r; } }; using pl = P<ll, ll>; using pi = P<int, int>; using vp = V<pl>; constexpr int inf = 1001001001; constexpr long long infLL = 4004004004004004004LL; template <typename T> int sz(const T &t) { return t.size(); } template <typename T, size_t N> void mem(T (&a)[N], int c) { memset(a, c, sizeof(T) * N); } template <typename T, typename U> inline bool amin(T &x, U y) { return (y < x) ? (x = y, true) : false; } template <typename T, typename U> inline bool amax(T &x, U y) { return (x < y) ? (x = y, true) : false; } template <typename T> int lb(const vector<T> &v, const T &a) { return lower_bound(begin(v), end(v), a) - begin(v); } template <typename T> int ub(const vector<T> &v, const T &a) { return upper_bound(begin(v), end(v), a) - begin(v); } constexpr long long TEN(int n) { long long ret = 1, x = 10; for (; n; x *= x, n >>= 1) ret *= (n & 1 ? x : 1); return ret; } template <typename T, typename U> pair<T, U> mkp(const T &t, const U &u) { return make_pair(t, u); } template <typename T> vector<T> mkrui(const vector<T> &v, bool rev = false) { vector<T> ret(v.size() + 1); if (rev) { for (int i = int(v.size()) - 1; i >= 0; i--) ret[i] = v[i] + ret[i + 1]; } else { for (int i = 0; i < int(v.size()); i++) ret[i + 1] = ret[i] + v[i]; } return ret; }; template <typename T> vector<T> mkuni(const vector<T> &v) { vector<T> ret(v); sort(ret.begin(), ret.end()); ret.erase(unique(ret.begin(), ret.end()), ret.end()); return ret; } template <typename F> vector<int> mkord(int N, F f) { vector<int> ord(N); iota(begin(ord), end(ord), 0); sort(begin(ord), end(ord), f); return ord; } template <typename T> vector<T> reord(const vector<T> &v, const vector<T> &ord) { int N = v.size(); vector<T> ret(N); for (int i = 0; i < N; i++) ret[i] = v[ord[i]]; return ret; }; template <typename T = int> vector<T> mkiota(int N) { vector<T> ret(N); iota(begin(ret), end(ret), 0); return ret; } template <typename T> vector<int> mkinv(vector<T> &v, int max_val = -1) { if (max_val < (int)v.size()) max_val = v.size() - 1; vector<int> inv(max_val + 1, -1); for (int i = 0; i < (int)v.size(); i++) inv[v[i]] = i; return inv; } } // namespace Nyaan // bit operation namespace Nyaan { __attribute__((target("popcnt"))) inline int popcnt(const u64 &a) { return _mm_popcnt_u64(a); } __attribute__((target("bmi"))) inline int lsb(const u64 &a) { return _tzcnt_u64(a); } __attribute__((target("bmi"))) inline int ctz(const u64 &a) { return _tzcnt_u64(a); } __attribute__((target("lzcnt"))) inline int msb(const u64 &a) { return 63 - _lzcnt_u64(a); } __attribute__((target("lzcnt"))) inline int clz64(const u64 &a) { return _lzcnt_u64(a); } template <typename T> inline int gbit(const T &a, int i) { return (a >> i) & 1; } template <typename T> inline void sbit(T &a, int i, bool b) { a ^= (gbit(a, i) == b ? 0 : (T(b) << i)); } constexpr long long PW(int n) { return 1LL << n; } constexpr long long MSK(int n) { return (1LL << n) - 1; } } // namespace Nyaan // inout namespace Nyaan { template <typename T, typename U> ostream &operator<<(ostream &os, const pair<T, U> &p) { os << p.first << " " << p.second; return os; } template <typename T, typename U> istream &operator>>(istream &is, pair<T, U> &p) { is >> p.first >> p.second; return is; } template <typename T> ostream &operator<<(ostream &os, const vector<T> &v) { int s = (int)v.size(); for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i]; return os; } template <typename T> istream &operator>>(istream &is, vector<T> &v) { for (auto &x : v) is >> x; return is; } void in() {} template <typename T, class... U> void in(T &t, U &... u) { cin >> t; in(u...); } void out() { cout << "\n"; } template <typename T, class... U, char sep = ' '> void out(const T &t, const U &... u) { cout << t; if (sizeof...(u)) cout << sep; out(u...); } void outr() {} template <typename T, class... U, char sep = ' '> void outr(const T &t, const U &... u) { cout << t; outr(u...); } struct IoSetupNya { IoSetupNya() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(15); cerr << fixed << setprecision(7); } } iosetupnya; } // namespace Nyaan // debug namespace DebugImpl { template <typename U, typename = void> struct is_specialize : false_type {}; template <typename U> struct is_specialize< U, typename conditional<false, typename U::iterator, void>::type> : true_type {}; template <typename U> struct is_specialize< U, typename conditional<false, decltype(U::first), void>::type> : true_type {}; template <typename U> struct is_specialize<U, enable_if_t<is_integral<U>::value, void>> : true_type { }; void dump(const char& t) { cerr << t; } void dump(const string& t) { cerr << t; } template <typename U, enable_if_t<!is_specialize<U>::value, nullptr_t> = nullptr> void dump(const U& t) { cerr << t; } template <typename T> void dump(const T& t, enable_if_t<is_integral<T>::value>* = nullptr) { string res; if (t == Nyaan::inf) res = "inf"; if (is_signed<T>::value) if (t == -Nyaan::inf) res = "-inf"; if (sizeof(T) == 8) { if (t == Nyaan::infLL) res = "inf"; if (is_signed<T>::value) if (t == -Nyaan::infLL) res = "-inf"; } if (res.empty()) res = to_string(t); cerr << res; } template <typename T, typename U> void dump(const pair<T, U>&); template <typename T> void dump(const pair<T*, int>&); template <typename T> void dump(const T& t, enable_if_t<!is_void<typename T::iterator>::value>* = nullptr) { cerr << "[ "; for (auto it = t.begin(); it != t.end();) { dump(*it); cerr << (++it == t.end() ? "" : ", "); } cerr << " ]"; } template <typename T, typename U> void dump(const pair<T, U>& t) { cerr << "( "; dump(t.first); cerr << ", "; dump(t.second); cerr << " )"; } template <typename T> void dump(const pair<T*, int>& t) { cerr << "[ "; for (int i = 0; i < t.second; i++) { dump(t.first[i]); cerr << (i == t.second - 1 ? "" : ", "); } cerr << " ]"; } void trace() { cerr << endl; } template <typename Head, typename... Tail> void trace(Head&& head, Tail&&... tail) { cerr << " "; dump(head); if (sizeof...(tail) != 0) cerr << ","; trace(forward<Tail>(tail)...); } } // namespace DebugImpl #ifdef NyaanDebug #define trc(...) \ do { \ cerr << "## " << #__VA_ARGS__ << " = "; \ DebugImpl::trace(__VA_ARGS__); \ } while (0) #else #define trc(...) #endif // macro #define each(x, v) for (auto&& x : v) #define each2(x, y, v) for (auto&& [x, y] : v) #define all(v) (v).begin(), (v).end() #define rep(i, N) for (long long i = 0; i < (long long)(N); i++) #define repr(i, N) for (long long i = (long long)(N)-1; i >= 0; i--) #define rep1(i, N) for (long long i = 1; i <= (long long)(N); i++) #define repr1(i, N) for (long long i = (N); (long long)(i) > 0; i--) #define reg(i, a, b) for (long long i = (a); i < (b); i++) #define regr(i, a, b) for (long long i = (b)-1; i >= (a); i--) #define repc(i, a, cond) for (long long i = (a); (cond); i++) #define enm(i, val, vec) \ for (long long i = 0; i < (long long)(vec).size(); i++) \ if (auto& val = vec[i]; false) \ ; \ else #define ini(...) \ int __VA_ARGS__; \ in(__VA_ARGS__) #define inl(...) \ long long __VA_ARGS__; \ in(__VA_ARGS__) #define ins(...) \ string __VA_ARGS__; \ in(__VA_ARGS__) #define inc(...) \ char __VA_ARGS__; \ in(__VA_ARGS__) #define in2(s, t) \ for (int i = 0; i < (int)s.size(); i++) { \ in(s[i], t[i]); \ } #define in3(s, t, u) \ for (int i = 0; i < (int)s.size(); i++) { \ in(s[i], t[i], u[i]); \ } #define in4(s, t, u, v) \ for (int i = 0; i < (int)s.size(); i++) { \ in(s[i], t[i], u[i], v[i]); \ } #define die(...) \ do { \ Nyaan::out(__VA_ARGS__); \ return; \ } while (0) namespace Nyaan { void solve(); } int main() { Nyaan::solve(); } // using namespace Nyaan; template <typename T> struct edge { int src, to; T cost; edge(int _to, T _cost) : src(-1), to(_to), cost(_cost) {} edge(int _src, int _to, T _cost) : src(_src), to(_to), cost(_cost) {} edge &operator=(const int &x) { to = x; return *this; } operator int() const { return to; } }; template <typename T> using Edges = vector<edge<T>>; template <typename T> using WeightedGraph = vector<Edges<T>>; using UnweightedGraph = vector<vector<int>>; // Input of (Unweighted) Graph UnweightedGraph graph(int N, int M = -1, bool is_directed = false, bool is_1origin = true) { UnweightedGraph g(N); if (M == -1) M = N - 1; for (int _ = 0; _ < M; _++) { int x, y; cin >> x >> y; if (is_1origin) x--, y--; g[x].push_back(y); if (!is_directed) g[y].push_back(x); } return g; } // Input of Weighted Graph template <typename T> WeightedGraph<T> wgraph(int N, int M = -1, bool is_directed = false, bool is_1origin = true) { WeightedGraph<T> g(N); if (M == -1) M = N - 1; for (int _ = 0; _ < M; _++) { int x, y; cin >> x >> y; T c; cin >> c; if (is_1origin) x--, y--; g[x].emplace_back(x, y, c); if (!is_directed) g[y].emplace_back(y, x, c); } return g; } // Input of Edges template <typename T> Edges<T> esgraph(int N, int M, int is_weighted = true, bool is_1origin = true) { Edges<T> es; for (int _ = 0; _ < M; _++) { int x, y; cin >> x >> y; T c; if (is_weighted) cin >> c; else c = 1; if (is_1origin) x--, y--; es.emplace_back(x, y, c); } return es; } // Input of Adjacency Matrix template <typename T> vector<vector<T>> adjgraph(int N, int M, T INF, int is_weighted = true, bool is_directed = false, bool is_1origin = true) { vector<vector<T>> d(N, vector<T>(N, INF)); for (int _ = 0; _ < M; _++) { int x, y; cin >> x >> y; T c; if (is_weighted) cin >> c; else c = 1; if (is_1origin) x--, y--; d[x][y] = c; if (!is_directed) d[y][x] = c; } return d; } // Depth of Rooted Tree // unvisited nodes : d = -1 vector<int> Depth(const UnweightedGraph &g, int start = 0) { vector<int> d(g.size(), -1); auto dfs = [&](auto rec, int cur, int par = -1) -> void { d[cur] = par == -1 ? 0 : d[par] + 1; for (auto &dst : g[cur]) { if (dst == par) continue; rec(rec, dst, cur); } }; dfs(dfs, start); return d; } // Depth of Rooted Weighted Tree // unvisited nodes : d = -1 template <typename T> vector<T> Depth(const WeightedGraph<T> &g, int start = 0) { vector<T> d(g.size(), -1); auto dfs = [&](auto rec, int cur, T val, int par = -1) -> void { d[cur] = val; for (auto &dst : g[cur]) { if (dst == par) continue; rec(rec, dst, val + dst.cost, cur); } }; dfs(dfs, start, 0); return d; } // Diameter of Tree // return value : { {u, v}, length } pair<pair<int, int>, int> Diameter(const UnweightedGraph &g) { auto d = Depth(g, 0); int u = max_element(begin(d), end(d)) - begin(d); d = Depth(g, u); int v = max_element(begin(d), end(d)) - begin(d); return make_pair(make_pair(u, v), d[v]); } // Diameter of Weighted Tree // return value : { {u, v}, length } template <typename T> pair<pair<int, int>, T> Diameter(const WeightedGraph<T> &g) { auto d = Depth(g, 0); int u = max_element(begin(d), end(d)) - begin(d); d = Depth(g, u); int v = max_element(begin(d), end(d)) - begin(d); return make_pair(make_pair(u, v), d[v]); } // nodes on the path u-v ( O(N) ) template <typename G> vector<int> Path(G &g, int u, int v) { vector<int> ret; int end = 0; auto dfs = [&](auto rec, int cur, int par = -1) -> void { ret.push_back(cur); if (cur == v) { end = 1; return; } for (int dst : g[cur]) { if (dst == par) continue; rec(rec, dst, cur); if (end) return; } if (end) return; ret.pop_back(); }; dfs(dfs, u); return ret; } // unreachable -> -1 template <typename T> vector<T> dijkstra(WeightedGraph<T> &g, int start = 0) { using P = pair<T, int>; int N = (int)g.size(); vector<T> d(N, T(-1)); priority_queue<P, vector<P>, greater<P> > Q; d[start] = 0; Q.emplace(0, start); while (!Q.empty()) { P p = Q.top(); Q.pop(); int cur = p.second; if (d[cur] < p.first) continue; for (auto dst : g[cur]) { if (d[dst] == T(-1) || d[cur] + dst.cost < d[dst]) { d[dst] = d[cur] + dst.cost; Q.emplace(d[dst], dst); } } } return d; } /* * @brief ダイクストラ法 * @docs docs/shortest-path/dijkstra.md **/ void Nyaan::solve() { ini(t, n, m); WeightedGraph<ll> g, rev; if (t == 0) { g = wgraph<ll>(n, m, false, true); } else { g = wgraph<ll>(n, m, true, true); } rev.resize(n); each(gi, g) each(e, gi) rev[e.to].emplace_back(e.to, e.src, e.cost); rep(i, n) each(e, rev[i]) trc(e.src, e.to, e.cost); ll ans = infLL; rep(i, n) { vl d(n, infLL), src(n, -1), d2(n, infLL); using Node = pair<ll, ll>; priority_queue<Node, V<Node>, greater<Node>> Q; Q.emplace(d[i] = 0, i); while (!Q.empty()) { auto [cd, c] = Q.top(); trc(cd, c); Q.pop(); if (d[c] != cd) continue; each(e, g[c]) { if(c == 2 and e == 1) { trc(c, d[c], src[c]); } if (d[e] > cd + e.cost) { d[e] = cd + e.cost, src[e] = c; if(c != i) d2[e] = d[e]; Q.emplace(d[e], e); } else if(d[e] == cd + e.cost) { if(src[e] != c) src[e] = -1; } if(c != i and src[c] != e) { amin(d2[e], cd + e.cost); } } } trc(d); trc(d2); each(e, rev[i]) { ll cir = e.cost + d2[e]; trc(i, e, cir); amin(ans, cir); } } out(ans == infLL ? -1 : ans); } /* #include "modint/montgomery-modint.hpp" using mint = LazyMontgomeryModInt<998244353>; using vm = vector<mint>; #include "math/affine-transformation.hpp" #include "misc/fastio.hpp" // #include "lct/link-cut-base.hpp" #include "lct/splay-reversible.hpp" // using Af = Affine<mint>; using T = pair<Af, Af>; T f(T a, T b) { return T(a.first * b.first, b.second * a.second); } T ts(T a) { return T(a.second, a.first); } using namespace Nyaan; void Nyaan::solve() { int N, Q; cin >> N >> Q; using Splay = ReversibleSplayTree<T, f, ts>; using LCT = LinkCutTree<Splay>; LCT lct; vector<LCT::Ptr> vs(N); rep(i, N) { int a, b; cin >> a >> b; vs[i] = lct.my_new(T(Af(a, b), Af(a, b))); } for (int i = 1; i < N; i++) { int a, b; cin >> a >> b; lct.evert(vs[a]); lct.link(vs[a], vs[b]); } while (Q--) { int cmd; cin >> cmd; if (cmd == 0) { int U, V, W, X; cin >> U >> V >> W >> X; lct.evert(vs[U]); lct.cut(vs[V]); lct.evert(vs[W]); lct.link(vs[W], vs[X]); } else if (cmd == 1) { int P; mint a, b; cin >> P >> a >> b; lct.expose(vs[P]); vs[P]->key = T(Af(a, b), Af(a, b)); lct.update(vs[P]); } else { int U, V; mint X; cin >> U >> V >> X; lct.evert(vs[U]); lct.expose(vs[V]); auto ret = vs[V]->sum.first; cout << ret(X) << "\n"; } } } */